
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Sorting Algorithms in Java 



 

 

Sorting data means arranging it in a certain order, often 

in an array-like data structure. You can use various 

ordering criteria, common ones being sorting numbers 

from least to greatest or vice-versa, or sorting strings 

lexicographically. 

 
1. Bubble Sort :- 

 

 

Explanation 
 

Bubble sort works by swapping adjacent elements if 

they're not in the desired order. This process repeats 

from the beginning of the array until all elements are in 

order. 

We know that all elements are in order when we manage 

to do the whole iteration without swapping at all - then 

all elements we compared were in the desired order with 

their adjacent elements, and by extension, the whole 

array. 



 

 

 

Here are the steps for sorting an array of numbers from 

least to greatest: 

 4 2 1 5 3: The first two elements are in the wrong 

order, so we swap them. 

 2 4 1 5 3: The second two elements are in the wrong 

order too, so we swap. 

 2 1 4 5 3: These two are in the right order, 4 < 5, so 

we leave them alone. 

 2 1 4 5 3: Another swap. 

 2 1 4 3 5: Here's the resulting array after one 

iteration. 

 
Because at least one swap occurred during the first pass 

(there were actually three), we need to go through the 

whole array again and repeat the same process. 

By repeating this process, until no more swaps are made, 

we'll have a sorted array. 



 

 

 

The reason this algorithm is called Bubble Sort is because 

the numbers kind of "bubble up" to the "surface." If you 

go through our example again, following a particular 

number (4 is a great example), you'll see it slowly moving 

to the right during the process. 

 
Implementation 

 

We assume the array is sorted, but if we're proven wrong 

while sorting (if a swap happens), we go through another 

iteration. The while-loop then keeps going until we 

manage to pass through the entire array without 

swapping: 
 



 

 

 

When using this algorithm, we have to be careful how we 

state our swap condition. 

For example, if I had used a[i] >= a[i+1] it could have 

ended up with an infinite loop, because for equal 

elements this relation would always be true, and hence 

always swap them. 

 
2. Insertion Sort :- 

 

Explanation 
 

The idea behind Insertion Sort is dividing the array into 

the sorted and unsorted subarrays. 

The sorted part is of length 1 at the beginning and is 

corresponding to the first (left-most) element in the 

array. We iterate through the array and during each 

iteration, we expand the sorted portion of the array by 

one element. 



 

 

 

Upon expanding, we place the new element into its 

proper place within the sorted subarray. We do this by 

shifting all of the elements to the right until we 

encounter the first element we don't have to shift. 

For example, if in the following array the bolded part is 

sorted in an ascending order, the following happens: 

 3 5 7 8 4 2 1 9 6: We take 4 and remember that 

that's what we need to insert. Since 8 > 4, we shift. 

 3 5 7 x 8 2 1 9 6: Where the value of x is not of 

crucial importance, since it will be overwritten 

immediately (either by 4 if it's its appropriate place 

or by 7 if we shift). Since 7 > 4, we shift. 

 3 5 x 7 8 2 1 9 6 

 3 x 5 7 8 2 1 9 6 

 3 4 5 7 8 2 1 9 6 

 
After this process, the sorted portion was expanded by 

one element, we now have five rather than four 

elements. Each iteration does this and by the end we'll 

have the whole array sorted. 



 

 
 
 
 
 

Implementation 
 
 

 
 

 

3. Selection Sort :- 
 

Explanation 
 

Selection Sort also divides the array into a sorted and 

unsorted subarray. Though, this time, the sorted 

subarray is formed by inserting the minimum element of 

the unsorted subarray at the end of the sorted array, by 

swapping: 



 

 
 
 
 
 

 3 5 1 2 4 

 1 5 3 2 4 

 1 2 3 5 4 

 1 2 3 5 4 

 1 2 3 4 5 

 1 2 3 4 5 

 
Implementation 

 

In each iteration, we assume that the first unsorted 

element is the minimum and iterate through the rest to 

see if there's a smaller element. 

Once we find the current minimum of the unsorted part 

of the array, we swap it with the first element and 

consider it a part of the sorted array: 



 

 
 
 
 

 

 

4. Merge Sort :- 
 

Explanation 
 

Merge Sort uses recursion to solve the problem of 

sorting more efficiently than algorithms previously 

presented, and in particular it uses a divide and conquer 

approach. 

Using both of these concepts, we'll break the whole array 

down into two subarrays and then: 

1. Sort the left half of the array (recursively) 

2. Sort the right half of the array (recursively) 

3. Merge the solutions 



 

 
 
 
 
 

 

 
 

This tree is meant to represent how the recursive calls 

work. The arrays marked with the down arrow are the 

ones we call the function for, while we're merging the 

up-arrow ones going back up. So, you follow the down 

arrow to the bottom of the tree, and then go back up and 

merge. 

In our example, we have the array 3 5 3 2 1, so we divide 

it into 3 5 4 and 2 1. To sort them, we further divide them 

into their components. Once we've reached the bottom, 

we start merging up and sorting them as we go. 



 

Implementation 

The core function works pretty much as laid out in the 

explanation. We're just passing indexes left and right 

which are indexes of the left-most and right-most 

element of the subarray we want to sort. Initially, these 

should be 0 and array.length-1, depending on 

implementation. 

The base of our recursion ensures we exit when we've 

finished, or when right and left meet each other. We find 

a midpoint mid, and sort subarrays left and right of it 

recursively, ultimately merging our solutions. 

If you remember our tree graphic, you might wonder 

why don't we create two new smaller arrays and pass 

them on instead. This is because on really long arrays, 

this would cause huge memory consumption for 

something that's essentially unnecessary. 

Merge Sort already doesn't work in-place because of the 

merge step, and this would only serve to worsen its 

memory efficiency. The logic of our tree of recursion 

otherwise stays the same, though, we just have to follow 

the indexes we're using: 



 

 
 
 

 
 

To merge the sorted subarrays into one, we'll need to 

calculate the length of each and make temporary arrays 

to copy them into, so we could freely change our main 

array. 

After copying, we go through the resulting array and 

assign it the current minimum. Because our subarrays 

are sorted, we just chose the lesser of the two elements 

that haven't been chosen so far, and move the iterator 

for that subarray forward: 



 

 



 

 

5. Heapsort :- 
 

Explanation 
 

To properly understand why Heapsort works, you must 

first understand the structure it's based on - the heap. 

We'll be talking in terms of a binary heap specifically, but 

you can generalize most of this to other heap structures 

as well. 

A heap is a tree that satisfies the heap property, which is 

that for each node, all of its children are in a given 

relation to it. Additionally, a heap must be almost 

complete. An almost complete binary tree of depth d has 

a subtree of depth d-1 with the same root that is 

complete, and in which each node with a left descendent 

has a complete left subtree. In other words, when adding 

a node, we always go for the leftmost position in the 

highest incomplete level. 

If the heap is a max-heap, then all of the children are 

smaller than the parent, and if it's a min-heap all of them 

are larger. 



 

 

 

In other words, as you move down the tree, you get to 

smaller and smaller numbers (min-heap) or greater and 

greater numbers (max-heap). Here's an example of a 

max-heap: 
 
 

 

 
We can represent this max-heap in memory as an array 

in the following way: 

8 5 6 3 1 2 4 



 

 
 
 
 
 

You can envision it as reading from the graph level by 

level, left to right. What we have achieved by this is that 

if we take the kth element in the array, its children's 

positions are 2*k+1 and 2*k+2 (assuming the indexing 

starts at 0). You can check this for yourself. 

Conversely, for the kth element the parent's position is 

always (k-1)/2. 

Knowing this, you can easily "max-heapify" any given 

array. For each element, check if any of its children are 

smaller than it. If they are, swap one of them with the 

parent, and recursively repeat this step with the parent 

(because the new large element might still be bigger than 

its other child). 

Leaves have no children, so they're trivially max-heaps of 

their own: 



 

 6 1 8 3 5 2 4: Both children are smaller than the 

parent, so everything stays the same. 

 6 1 8 3 5 2 4: Because 5 > 1, we swap them. We 

recursively heapify for 5 now. 

 6 5 8 3 1 2 4: Both of the children are smaller, so 

nothing happens. 

 6 5 8 3 1 2 4: Because 8 > 6, we swap them. 

 8 5 6 3 1 2 4: We got the heap pictured above! 

Once we've learned to heapify an array the rest is pretty 

simple. We swap the root of the heap with the end of the 

array, and shorten the array by one. 

 
We heapify the shortened array again, and repeat the 

process: 

 8 5 6 3 1 2 4 

 4 5 6 3 1 2 8: swapped 

 6 5 4 3 1 2 8: heapified 

 2 5 4 3 1 6 8: swapped 

 5 2 4 2 1 6 8: heapified 

 1 2 4 2 5 6 8: swapped 

And so on, I'm sure you can see the pattern emerging. 



 

Implementation 
 
 



 

6. Quicksort :- 
 

 

Explanation 
 

Quicksort is another Divide and Conquer algorithm. It 

picks one element of an array as the pivot and sorts all of 

the other elements around it, for example smaller 

elements to the left, and larger to the right. 

This guarantees that the pivot is in its proper place after 

the process. Then the algorithm recursively does the 

same for the left and right portions of the array. 

 
 
 

 
Implementation 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Performance Comparison :- 



 

time(ns) 
Bubble 

Sort 
Insertion 

Sort 
Selection 

Sort 
MergeS 

ort 
HeapSort 

QuickSor 
t 

First Run 266,089,476 21,973,989 66,603,076 5,511,069 5,283,411 4,156,005 

Second 
Run 

323,692,591 29,138,068 80,963,267 8,075,023 6,420,768 7,060,203 

Third Run 303,853,052 21,380,896 91,810,620 7,765,258 8,009,711 7,622,817 

Fourth 
Run 

410,171,593 30,995,411 96,545,412 6,560,722 5,837,317 2,358,377 

Fifth Run 315,602,328 26,119,110 95,742,699 5,471,260 14,629,836 3,331,834 

Sixth Run 286,841,514 26,789,954 90,266,152 9,898,465 4,671,969 4,401,080 

Seventh 
Run 

384,841,823 18,979,289 72,569,462 5,135,060 10,348,805 4,982,666 

Eight Run 393,849,249 34,476,528 107,951,645 8,436,103 10,142,295 
13,678,77 
2 

Ninth 
Run 

306,140,830 57,831,705 138,244,799 5,154,343 5,654,133 4,663,260 

Tenth 
Run 

306,686,339 34,594,400 89,442,602 5,601,573 4,675,390 3,148,027 

 

We can evidently see that Bubble Sort is the worst when it comes to performance. Avoid using 

it in production if you can't guarantee that it'll handle only small collections and it won't stall 

the application. 

HeapSort and QuickSort are the best performance-wise. Although they're outputting similar 

results, QuickSort tends to be a bit better and more consistent 


	1. Bubble Sort :-
	2. Insertion Sort :-
	3. Selection Sort :-
	4. Merge Sort :-

