
1

SQL Notes

2

Structured Query language (SQL)

1. Create database create database sample2

2. Use the database use sample2

3. Create table create table customer
(
customerid int identity(1,1) primary key,
customernumber int not null unique check (customernumber>0),
lastname varchar(30) not null,
firstname varchar(30) not null,
areacode int default 71000,
address varchar(50),
country varchar(50) default 'Malaysia'
)

4. Insert values into table insert into customer values
(100,'Fang Ying','Sham','418999','sdadasfdfd',default),
(200,'Mei Mei','Tan',default,'adssdsadsd','Thailand'),
(300,'Albert','John',default,'dfdsfsdf',default)

5. Display record from table -- display all records
select * from customer

-- display particular columns
select customerid, customernumber, lastname, firstname
from customer

6. Add new column to table alter table customer
add phonenumber varchar(20)

7. Add values to newly added
column/ Update table

update customer set phonenumber='1234545346' where
customerid=1
update customer set phonenumber='45554654' where
customerid=2

8. Delete a column alter table customer
drop column phonenumber

9. Delete record from table

--if not put ‘where’, will
delete all record

delete
from customer
where country='Thailand'

10. Delete table drop table customer

11. Change data type alter table customer
alter column phonenumber varchar(10)

SELECT

DQL (retrieve data
from the DB using SQL

queries)

ROLLBACK

COMMIT

TCL (deals with the
transactions happening

in the DB)

REVOKE

GRANT

DCL (deals with access
rights and data control
on the data present in

the db)

DELETE

UPDATE

INSERT

DML (manipulate data

present in the DB)

TRUNCATE

ALTER

DROP

CREATE

DDL (define database

schema in DBMS)

SQL Commands

DDL : Data Definition Language DML: Data Manipulation Language

DCL : Data Control Language TCL : Transaction Control Language

DQL : Data Query Language

3

1. Create database create database SaleOrder

2. Use the database use SaleOrder

3. Create tables create table dbo.customer (
CustomerID int NOT null primary key,
CustomerFirstName varchar(50) NOT null,
CustomerLastName varchar(50) NOT null,
CustomerAddress varchar(50) NOT null,
CustomerSuburb varchar(50) null,
CustomerCity varchar(50) NOT null,
CustomerPostCode char(4) null,
CustomerPhoneNumber char(12) null,
);

create table dbo.inventory (
InventoryID tinyint NOT null primary key,
InventoryName varchar(50) NOT null,
InventoryDescription varchar(255) null,
);

create table dbo.employee (
EmployeeID tinyint NOT null primary key,
EmployeeFirstName varchar(50) NOT null,
EmployeeLastName varchar(50) NOT null,
EmployeeExtension char(4) null,
);

create table dbo.sale (
SaleID tinyint not null primary key,
CustomerID int not null references customer(CustomerID),
InventoryID tinyint not null references Inventory(InventoryID),
EmployeeID tinyint not null references Employee(EmployeeID),
SaleDate date not null,
SaleQuantity int not null,
SaleUnitPrice smallmoney not null
);

4. Check what table inside select * from information_schema.tables

5. View specific row --top: show only the first two
select top 2 * from customer

--top 40 percent: also means show the first two
select top 40 percent * from customer

6. View specific column --sort result (by default is ascending)
select customerfirstname, customerlastname from customer
order by customerlastname desc

select customerfirstname, customerlastname from customer
order by 4, 2, 3 desc -- Order By Based on column no. without typing column
name

--distinct: only show unique value
select distinct customerlastname from customer
order by customerlastname

4

7. Save table to another table --into file_name: save result in another table (BASE TABLE)
select distinct customerlastname into temp
from customer
order by customerlastname

select * from temp --see the table (data type will remain)

8. Like (search something) -- (underscore sign) _ is only specific for one character only
-- (percent sign) % represents zero, one, or multiple characters
select * from customer
where customerlastname like '_r%'

9. In (search something) -- search multiple items
select * from customer
where customerlastname in ('Brown', ‘Michael’, ’Jim’)

10. > (search something) select * from customer
where customerlastname > 'Brown' or customerlastname>'Cross'

11. <> (Not Equal) select * from customer
where customerlastname <> 'Brown'

12. IS NULL -- check null values
select * from customer
where customerlastname IS NULL

13. IS NOT NULL select * from customer
where customerlastname IS NOT NULL

14. between select * from sale
where saleunitprice between 5 and 10 --not include 5 & 10

15. count -- returns the number of rows in a table
-- AS means aliasing, temporary giving name to a column/ table
select count(*) as [Number of Records] from customer
where customerfirstname like 'B%'

16. sum select sale.employeeid ,EmployeeFirstName, EmployeeLastName , count(*) as
[Number of order] ,
sum(salequantity) as [Total Quantity]
from sale,employee
where sale.employeeid = employee.employeeid
group by sale.employeeid ,EmployeeFirstName, EmployeeLastName

17. count month select month(saledate) as [Month], count (*) as [Number of sale],
sum(salequantity*saleunitprice) as [Total Amount]
from sale
group by month(saledate)

18. max SELECT MAX(Salary)
FROM EmployeeSalary

19. min SELECT MIN(Salary)
FROM EmployeeSalary

20. average SELECT AVG(Salary)
FROM EmployeeSalary

5

21. having SELECT JobTitle, COUNT(JobTitle)
FROM EmployeeDemographics ED
JOIN EmployeeSalary ES

ON ED.EmployeeID = ES.EmployeeID
GROUP BY JobTitle
HAVING COUNT(JobTitle) > 1

SELECT JobTitle, AVG(Salary)
FROM EmployeeDemographics ED
JOIN EmployeeSalary ES

ON ED.EmployeeID = ES.EmployeeID
GROUP BY JobTitle
HAVING AVG(Salary) > 45000
ORDER BY AVG(Salary)

22. Change data type
temporary for use

-- CAST(expression AS datatype(length))
SELECT CAST('2017-08-25 00:00:00.000' AS date)

-- CONVERT(data_type(length), expression, style)
SELECT CONVERT(date,'2017-08-25 00:00:00.000')

23. CASE Statement SELECT FirstName, LastName, Age,
CASE

WHEN Age > 30 THEN 'Old'
WHEN Age BETWEEN 27 AND 30 THEN 'Young'
ELSE 'Baby'

END
FROM EmployeeDemographics ED
WHERE Age IS NOT NULL
ORDER BY Age

--
SELECT FirstName, LastName, JobTitle, Salary,
CASE

WHEN JobTitle = 'Salesman' THEN Salary + (Salary *.10)
WHEN JobTitle = 'Accountant' THEN Salary + (Salary *.05)
WHEN JobTitle = 'HR' THEN Salary + (Salary *.000001)
ELSE Salary + (Salary *.03)

END AS SalaryAfterRaise
FROM EmployeeDemographics ED
JOIN EmployeeSalary ES
ON ED.EmployeeID = ES.EmployeeID

24. Partition By
--returns a single value for each
row

SELECT FirstName, LastName, Gender, Salary,
COUNT(Gender) OVER (PARTITION BY Gender) AS TotalGender
FROM EmployeeDemographics ED
JOIN EmployeeSalary ES
ON ED.EmployeeID = ES.EmployeeID

6

25. String Functions -- Remove space
Select EmployeeID, TRIM(EmployeeID) AS IDTRIM
FROM EmployeeErrors

Select EmployeeID, RTRIM(EmployeeID) as IDRTRIM
FROM EmployeeErrors

Select EmployeeID, LTRIM(EmployeeID) as IDLTRIM
FROM EmployeeErrors

-- Replace
Select LastName, REPLACE(LastName, '- Fired', '') as
LastNameFixed
FROM EmployeeErrors

-- Substring
Select Substring(err.FirstName,1,3),
Substring(dem.FirstName,1,3), Substring(err.LastName,1,3),
Substring(dem.LastName,1,3)
FROM EmployeeErrors err
JOIN EmployeeDemographics dem

on Substring(err.FirstName,1,3) =
Substring(dem.FirstName,1,3)

and Substring(err.LastName,1,3) =
Substring(dem.LastName,1,3)

-- UPPER and LOWER CASE
Select firstname, LOWER(firstname)
from EmployeeErrors

Select Firstname, UPPER(FirstName)
from EmployeeErrors"

26. Stored Procedure CREATE PROCEDURE Temp_Employee
@JobTitle nvarchar(100)
AS
DROP TABLE IF EXISTS #temp_employee
Create table #temp_employee (
JobTitle varchar(100),
EmployeesPerJob int ,
AvgAge int,
AvgSalary int
)

Insert into #temp_employee
SELECT JobTitle, Count(JobTitle), Avg(Age), AVG(salary)
FROM EmployeeDemographics emp
JOIN EmployeeSalary sal

ON emp.EmployeeID = sal.EmployeeID
where JobTitle = @JobTitle --- make sure to change this in
this script from original above
group by JobTitle

Select *
From #temp_employee
GO;

7

 --- only need to run this on next time
EXEC Temp_Employee @JobTitle = 'Salesman'

27. Subquery -- Subquery in Select
SELECT EmployeeID, Salary, (SELECT AVG(Salary) FROM
EmployeeSalary) AS AllAvgSalary
FROM EmployeeSalary

-- with Partition By
SELECT EmployeeID, Salary, AVG(Salary) OVER () AS
AllAvgSalary
FROM EmployeeSalary

-- Subquery in From
SELECT a.EmployeeID, AllAvgSalary
FROM (SELECT EmployeeID, Salary, AVG(Salary) OVER () AS
AllAvgSalary

FROM EmployeeSalary) a
ORDER BY a.EmployeeID

-- Subquery in Where
SELECT EmployeeID, JobTitle, Salary
FROM EmployeeSalary
WHERE EmployeeID in (SELECT EmployeeID FROM
EmployeeDemographics

WHERE Age > 30)

SELECT EmployeeID, JobTitle, Salary
FROM EmployeeSalary
WHERE Salary in (SELECT Max(Salary) FROM EmployeeSalary)

8

1. getting data from multiple

tables
(explicit join - without using
join command)

select * from inventory,sale
where sale.inventoryid=inventory.inventoryid

select
inventoryname,saledate,saleunitprice,salequantity,salequantity*saleunitprice
as [Total amount]
from sale,inventory
where sale.inventoryid=inventory.inventoryid
group by sale.inventoryid,inventoryname,saledate,salequantity,saleunitprice
order by inventoryname

2. getting data from multiple
tables
(implicit join - using join
command)

--inner join
select * from inventory
inner join sale
on sale.inventoryid=inventory.inventoryid

select
inventoryname,saledate,saleunitprice,salequantity,saleunitprice*salequantity
as [Total Amount]
from inventory inner join sale
on sale.inventoryid=inventory.inventoryid
order by inventoryname

inventory sales

--full outer join (shows everything)
select sale.inventoryid,inventoryname
from inventory
full outer join sale on
sale.inventoryid=inventory.inventoryid
where sale.inventoryid is NULL

inventory sales

SQL JOINS

Inner Join Self Join Outer Join Cross Join

Left Outer Join Right Outer Join Full Outer Join

9

--left join (might have NULL value, since some inventory might not have sales)
select inventory.inventoryid,inventoryname
from inventory left join sale on
sale.inventoryid=inventory.inventoryid

inventory sales

--left join
select inventory.inventoryid,inventoryname
from inventory left join sale on
sale.inventoryid=inventory.inventoryid
where sale.inventoryid is NULL

inventory sales

-- without join: use subquery
select inventoryid,inventoryname from inventory
where inventoryid not in (select inventoryid from sale)

--right join
select sale.inventoryid,inventoryname
from inventory right join sale on
sale.inventoryid=inventory.inventoryid

inventory

sales

3. Self Join
--commonly used in processing
hierarchy

--inner join
Staff Table
 employeeID employeefirstname employeelastname managerID

1001 Tan Mei Ling NULL

1002 Kelvin Koh 1001
1003 Amin Wong 1002

select E.employeeID, E.employeefirstname+' '+E.employeelastname as [Full
Name], E.managerID, , M.employeefirstname+' '+M.employeelastname as
[Manager Name]
from staff E
inner join staff M
on E.managerID = M.employeeID

10

Output:

employeeID Full Name managerID managerName

1002 Kelvin Koh 1001 Tan Mei Ling

1003 Amin Wong 1002 Kelvin Koh

--left outer join (list all the employees)
select E.employeeID, E.employeefirstname+' '+E.employeelastname as [F
Name], E.managerID, , M.employeefirstname+' '+M.employeelastname as
[Manager Name]
from staff E
left outer join staff M
on E.managerID = M.employeeID

Output:

4. Cross Join
--generate all combination of
records (all possibility)
(Cartesian Product)

select * from inventory1
cross join inventory2

employeeID Full Name managerID managerName

1001 Tan Mei Ling

1002 Kelvin Koh 1001 Tan Mei Ling

1003 Amin Wong 1002 Kelvin Koh

11

SQL UNIONS

1. Union
--allow you to combine two tables
together (but the no. of columns &
each column’s data types for 2 tables
must be match)
--don't need common key, only need
common attributes
--merge, not showing duplicate record

select cust_lname,cust_fname from customer
union
select cust_lname,cust_fname from customer_2

2. Union all
--merge, but show you everything, even
the duplicate record

select cust_lname,cust_fname from customer
union all
select cust_lname,cust_fname from customer_2

customer customer_2

3. Intersect
--keep only the rows in common to
both query
--not showing duplicate record

select cust_lname,cust_fname from customer
intersect
select cust_lname,cust_fname from customer_2

customer customer_2

select c.cust_lname,c.cust_fname from customer c,customer_2 c2
where c.cust_lname=c2.cust_lname and c.cust_fname=c2.cust_fname

4. Except
--generate only the records that are
unique to
the CUSTOMER table

select cust_lname,cust_fname from customer
except
select cust_lname,cust_fname from customer_2

customer customer_2

--use subquery
select cust_lname,cust_fname from customer
where(cust_lname) not in
(select cust_lname from customer_2) and
(cust_fname) not in
(select cust_fname from customer_2)

12

Table & View

1. view table
(view will be updated when
update base)
--view is a result set of SQL
statements, exists only for a
single query

create view CustomerView as
select customerfirstname+' '+customerlastname as [Customer Name] ,
customerphonenumber,
inventoryname,saledate,salequantity,saleunitprice,salequantity*saleunitprice
as [Total Amount]
from customer inner join sale on customer.customerid=sale.customerid inner
join inventory
on sale.inventoryid=inventory.inventoryid

customer

inventory sales

2. Temp table
(temp will NOT be updated
when update base)
--a single hashtag (#) sign
must be added in front of
their names
--used to store data
temporarily, physically
created in the Tempdb
database
--can perform CRUD, join, and
some other operations like
the persistent database tables

DROP TABLE IF EXISTS #temp_Employee

Create table #temp_Employee (
JobTitle varchar(100),
EmployeesPerJob int,
AvgAge int,
AvgSalary int
)

Insert INTO #temp_Employee
SELECT JobTitle, Count(JobTitle), Avg(Age), AVG(salary)
FROM EmployeeDemographics emp
JOIN EmployeeSalary sal

ON emp.EmployeeID = sal.EmployeeID
group by JobTitle

SELECT * FROM #temp_Employee

3. CTE (Common Table
Expression)
--create temporary result set
which is used to manipulate
the complex sub-queries data
--created in memory rather
than Tempdb database, so
cannot create any index on
CTE.

WITH CTE_Employee AS
(
SELECT FirstName, LastName, Gender, Salary,
COUNT(Gender) OVER (PARTITION BY Gender) AS TotalGender
FROM EmployeeDemographics ED
JOIN EmployeeSalary ES

ON ED.EmployeeID = ES.EmployeeID
WHERE Salary > '45000'
)

SELECT FirstName, LastName, Gender, TotalGender
FROM CTE_Employee
WHERE TotalGender = (SELECT MIN(TotalGender) FROM CTE_Employee)

4. Duplicate Table select customerfirstname+' '+customerlastname as [Customer Name] ,
customerphonenumber,
inventoryname,saledate,salequantity,saleunitprice,salequantity*saleunitprice
as [Total Amount] into customerRec
from customer inner join sale on customer.customerid=sale.customerid inner
join inventory
on sale.inventoryid=inventory.inventoryid
order by customerfirstname +' '+ customerlastname,inventoryname

13

SQL RANKS

1. ROW_NUMBER() --get a unique sequential number for each row
--get different ranks for the row having similar values

SELECT *,

ROW_NUMBER() OVER(ORDER BY Salary DESC) SalaryRank
FROM EmployeeSalary

2. RANK() --specify rank for each row in the result set
--use PARTITION BY to performs calculation on each group
--each subset get rank as per Salary in descending order

USING PARTITION BY
SELECT *,

RANK() OVER(PARTITION BY JobTitle ORDER BY Salary DESC)
SalaryRank
FROM EmployeeSalary
ORDER BY JobTitle, SalaryRank

NOT USING PARTITION BY

-- get SAME ranks for the row having similar values
SELECT *,

RANK() OVER(ORDER BY Salary DESC) SalaryRank
FROM EmployeeSalary
ORDER BY SalaryRank

14

3. DENSE_RANK()

-- if have duplicate values, SQL assigns different ranks to those rows.
-- will get the same rank for duplicate or similar values

SELECT *,

DENSE_RANK() OVER(ORDER BY Salary DESC) SalaryRank
FROM EmployeeSalary
ORDER BY SalaryRank

RANK()

SELECT *,

RANK() OVER(PARTITION BY JobTitle ORDER
BY Salary DESC) SalaryRank
FROM EmployeeSalary
ORDER BY JobTitle, SalaryRank

-- skip a rank if have similar values

DENSE_RANK()

SELECT *,

DENSE_RANK() OVER(PARTITION BY JobTitle
ORDER BY Salary DESC) SalaryRank
FROM EmployeeSalary
ORDER BY JobTitle, SalaryRank

-- maintains the rank and does not give any gap
for the values

15

4. NTILE() -- can specify required how many group of result, and it will rank accordingly

SELECT *,

NTILE(3) OVER(ORDER BY Salary DESC) SalaryRank
FROM EmployeeSalary
ORDER BY SalaryRank;

Group 1

Group 2

Group 3

USING PARTITION BY
SELECT *,

NTILE(3) OVER(PARTITION BY JobTitle ORDER BY Salary DESC)
SalaryRank
FROM EmployeeSalary
ORDER BY JobTitle, SalaryRank;

Group 1

Group 2

Group 3

16

1. Write the query to show the
invoice number, the customer
number, the customer
name, the invoice date, and the
invoice amount for all
customers with a customer
balance
of $1,000 or more.

select
invoice_num,c.cust_num,c.cust_lname,c.cust_fname,inv_date,inv_amount
from customer c, invoice
where c.cust_num=invoice.cust_num and cust_balance>=1000

select invoice_num,c.cust_num,cust_lname+' '+cust_fname as
[Name],inv_date,inv_amount
from customer c join invoice i
on c.cust_num=i.cust_num
where cust_balance>=1000

2. ISNULL(expression, value)
--expression: to test whether is
NULL, value: to return if
expression is NULL

--ParcelID is same, but UniqueID is different; can assume that if the ParcelID is
same, the Property Address will be same
Select a.ParcelID, a.PropertyAddress, b.ParcelID,
b.PropertyAddress,
ISNULL(a.PropertyAddress,b.PropertyAddress)
From NashvilleHousing a
JOIN NashvilleHousing b

on a.ParcelID = b.ParcelID
AND a.[UniqueID] <> b.[UniqueID]

Where a.PropertyAddress is null

-- Update record
Update a
SET PropertyAddress =
ISNULL(a.PropertyAddress,b.PropertyAddress)
From NashvilleHousing a
JOIN NashvilleHousing b

on a.ParcelID = b.ParcelID
AND a.[UniqueID] <> b.[UniqueID]

Where a.PropertyAddress is null

3. Split by delimiter

 SUBSTRING(string, start,

length)

 CHARINDEX(substring,

string, start)

 LEN(string)

SELECT PropertyAddress,
SUBSTRING(PropertyAddress, 1, CHARINDEX(',',
PropertyAddress) -1) as Address
, SUBSTRING(PropertyAddress, CHARINDEX(',',
PropertyAddress) + 1 , LEN(PropertyAddress)) as City
From NashvilleHousing

ALTER TABLE NashvilleHousing
Add PropertySplitAddress Nvarchar(255);

ALTER TABLE NashvilleHousing
Add PropertySplitCity Nvarchar(255);

17

 Update NashvilleHousing
SET PropertySplitAddress = SUBSTRING(PropertyAddress, 1,
CHARINDEX(',', PropertyAddress) -1)

Update NashvilleHousing
SET PropertySplitCity = SUBSTRING(PropertyAddress,
CHARINDEX(',', PropertyAddress) + 1 , LEN(PropertyAddress))

 PARSENAME('object_name'

, object_piece)
--numbering works from
right to left

 REPLACE(string, old_string,
new_string)

Select OwnerAddress,
PARSENAME(REPLACE(OwnerAddress, ',', '.') , 3)
,PARSENAME(REPLACE(OwnerAddress, ',', '.') , 2)
,PARSENAME(REPLACE(OwnerAddress, ',', '.') , 1)
From NashvilleHousing

ALTER TABLE NashvilleHousing
Add OwnerSplitAddress Nvarchar(255);
ALTER TABLE NashvilleHousing
Add OwnerSplitCity Nvarchar(255);
ALTER TABLE NashvilleHousing
Add OwnerSplitState Nvarchar(255);

Update NashvilleHousing
SET OwnerSplitAddress = PARSENAME(REPLACE(OwnerAddress,
',', '.') , 3)

 Update NashvilleHousing
SET OwnerSplitCity = PARSENAME(REPLACE(OwnerAddress, ',',
'.') , 2)

Update NashvilleHousing
SET OwnerSplitState = PARSENAME(REPLACE(OwnerAddress, ',',
'.') , 1)

5. Remove duplicate records WITH RowNumCTE AS(
Select *,

ROW_NUMBER() OVER (
PARTITION BY ParcelID,

PropertyAddress,
SalePrice,
SaleDate,
LegalReference
ORDER BY UniqueID) as row_num

From NashvilleHousing
order by ParcelID
)
--DELETE
Select * From RowNumCTE
Where row_num > 1
Order by PropertyAddress

	SQL Notes

