

SQL Hand Book

#_ The SQL Handbook: +100 SQL Concepts

1. Basic SQL Concepts:

1- SQL:

2- Relational Databases:

3- Tables:

4- Columns:

5- Rows:

6- Data Types:

7- SELECT:

The SELECT statement is used to select data from a database.

Stands for "Structured Query Language". It's a standard language for

managing and manipulating databases.

These are databases structured to recognize relations among stored

items of information. Example: MySQL, PostgreSQL, Oracle DB.

In SQL, a table is a collection of related data held in a structured

format within a database. It consists of columns and rows.

These are set of data values of a particular simple type, one value

for each row of the database.

Also called a record or tuple, a row is a set of data values that are

interrelated.

Each column in a SQL table has a related data type. SQL has several data

types like INT, VARCHAR, DATE, BOOLEAN, etc.

SELECT column_name FROM table_name;

8- FROM:

9- WHERE:

The WHERE clause is used to filter records.

10- INSERT INTO:

The INSERT INTO statement is used to insert new records in a table.

11- UPDATE:

The UPDATE statement is used to modify the existing records in a table.

12- DELETE:

The DELETE statement is used to delete existing records in a table.

13- Operators:

14- AND, OR, NOT:

The AND, OR and NOT operators are used to filter records based on more

than one condition.

FROM clause is used to specify the table to select or delete data

from.

SELECT column_name FROM table_name WHERE condition;

INSERT INTO table_name (column1, column2, column3) VALUES (value1, value2,

value3);

UPDATE table_name SET column1 = value1, column2 = value2 WHERE condition;

DELETE FROM table_name WHERE condition;

SQL uses operators like '=', '<>', '>', '<', '>=', '<=', 'BETWEEN', 'LIKE',

'IN' etc.

SELECT column1, column2 FROM table_name WHERE condition1 AND condition2;

15- ORDER BY:

The ORDER BY keyword is used to sort the result-set in ascending or

descending order.

16- DISTINCT:

The DISTINCT keyword is used to return only distinct (different)

values.

17- COUNT, AVG, SUM:

The COUNT(), AVG() and SUM() functions return a count, average and sum

of the numeric column values.

18- GROUP BY:

The GROUP BY statement groups rows that have the same values in

specified columns into aggregated data.

19- HAVING:

The HAVING clause was added to SQL because the WHERE keyword could not

be used with aggregate functions.

20- CREATE DATABASE:

The CREATE DATABASE statement is used to create a new SQL database.

SELECT column_name FROM table_name ORDER BY column_name ASC|DESC;

SELECT DISTINCT column_name FROM table_name;

SELECT COUNT(column_name) FROM table_name;

SELECT AVG(column_name) FROM table_name;

SELECT SUM(column_name) FROM table_name;

SELECT column_name, COUNT(column_name) FROM table_name GROUP BY column_name;

SELECT column_name, COUNT(column_name) FROM table_name GROUP BY column_name

HAVING COUNT(column_name) > value;

CREATE DATABASE database_name;

21- DROP DATABASE:

The DROP DATABASE statement is used to drop an existing SQL database.

22- CREATE TABLE:

The CREATE TABLE statement is used to create a new table in a database.

23- DROP TABLE:

The DROP TABLE statement is used to drop an existing table in a SQL

database.

24- ALTER TABLE:

The ALTER TABLE statement is used to add, delete/drop or modify columns

in an existing table.

25- Constraints:

26- PRIMARY KEY:

A PRIMARY KEY is a constraint that uniquely identifies each record in a

database table. Primary keys must contain unique values. A primary key

column cannot have NULL values.

DROP DATABASE database_name;

CREATE TABLE table_name (column1 datatype, column2 datatype, column3

datatype);

DROP TABLE table_name;

ALTER TABLE table_name ADD column_name datatype;

ALTER TABLE table_name DROP COLUMN column_name;

ALTER TABLE table_name MODIFY COLUMN column_name datatype;

SQL constraints are used to specify rules for the data in a table.

Constraints are used to limit the type of data that can go into a

table. This ensures the accuracy and reliability of the data in the

table. Constraints can be column level or table level.

CREATE TABLE table_name (column1 datatype PRIMARY KEY, column2 datatype,

column3 datatype);

27- FOREIGN KEY:

A FOREIGN KEY is a field (or collection of fields) in one table, that

refers to the PRIMARY KEY in another table.

28- CHECK:

The CHECK constraint is used to limit the value range that can be

placed in a column.

29- UNIQUE:

The UNIQUE constraint ensures that all values in a column are

different.

30- INDEX:

Indexes are used to retrieve data from the database more quickly than

otherwise.

CREATE TABLE Orders (

OrderID int NOT NULL,

OrderNumber int NOT NULL,

PersonID int,

PRIMARY KEY (OrderID),

FOREIGN KEY (PersonID) REFERENCES Persons(PersonID)

);

CREATE TABLE table_name (

column1 datatype CONSTRAINT chk_column CHECK (condition),

column2 datatype, column3 datatype

);

CREATE TABLE table_name (

column1 datatype UNIQUE,

column2 datatype, column3 datatype

);

CREATE INDEX index_name ON table_name (column1, column2);

31- AUTO INCREMENT:

Auto-increment allows a unique number to be generated automatically

when a new record is inserted into a table.

32- DATE:

SQL uses the DATE data type to store date data.

33- NULL:

 The NULL value represents a missing unknown data.

34- IS NULL/IS NOT NULL:

IS NULL and IS NOT NULL are operators used with the WHERE clause to

test for empty values.

35- LIKE:

The LIKE operator is used in a WHERE clause to search for a specified

pattern in a column.

36- IN:

The IN operator allows you to specify multiple values in a WHERE

clause.

CREATE TABLE table_name (

ID int NOT NULL AUTO_INCREMENT,

column1 datatype, column2 datatype,

PRIMARY KEY (ID)

);

SELECT column_name FROM table_name WHERE DATE(column_name) = 'YYYY-MM-DD';

SELECT column_name FROM table_name WHERE column_name IS NULL;

SELECT column_name FROM table_name WHERE column_name IS NOT NULL;

SELECT column_name FROM table_name WHERE column_name LIKE pattern;

SELECT column_name FROM table_name WHERE column_name IN (value1, value2);

37- BETWEEN:

The BETWEEN operator selects values within a given range inclusive.

38- JOIN:

A JOIN clause is used to combine rows from two or more tables, based on

a related column between them.

39- INNER JOIN:

The INNER JOIN keyword selects records that have matching values in

both tables.

40- LEFT (OUTER) JOIN:

The LEFT JOIN keyword returns all records from the left table, and the

matched records from the right table.

41- RIGHT (OUTER) JOIN:

The RIGHT JOIN keyword returns all records from the right table, and

the matched records from the left table.

SELECT column_name FROM table_name WHERE column_name BETWEEN value1 AND

value2;

SELECT Orders.OrderID, Customers.CustomerName

FROM Orders

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

SELECT employees.name, departments.dept_name FROM employees INNER JOIN

departments ON employees.id = departments.employee_id;

SELECT employees.name, departments.dept_name FROM employees LEFT JOIN

departments ON employees.id = departments.employee_id;

SELECT employees.name, departments.dept_name FROM employees RIGHT JOIN

departments ON employees.id = departments.employee_id;

42- FULL (OUTER) JOIN:

The FULL OUTER JOIN keyword returns all records when there is a match

in either left or right table records.

43- UNION:

The UNION operator is used to combine the result-set of two or more

SELECT statements. Each SELECT statement within UNION must have the

same number of columns.

44- UNION ALL:

UNION ALL is used to combine the result-set of two or more SELECT

statements with duplicate values.

45- SELECT INTO:

The SELECT INTO statement copies data from one table into a new table.

46- INSERT INTO SELECT:

The INSERT INTO SELECT statement copies data from one table and inserts

it into another table.

SELECT employees.name, departments.dept_name FROM employees FULL JOIN

departments ON employees.id = departments.employee_id;

SELECT column_name(s) FROM table1

UNION

SELECT column_name(s) FROM table2;

SELECT column_name(s) FROM table1

UNION ALL

SELECT column_name(s) FROM table2;

SELECT column_name(s)

INTO newtable [IN externaldb]

FROM oldtable

WHERE condition;

INSERT INTO table2 (column1, column2, column3, ...)

SELECT column1, column2, column3, ...

FROM table1

WHERE condition;

47- CASE:

The CASE statement goes through conditions and returns a value when the

first condition is met.

48- Stored Procedure:

A stored procedure is a prepared SQL code that you can save, so the

code can be reused over and over again.

49- TRIGGER:

A trigger is a stored procedure in a database that automatically reacts

to an event like insertions, updates, or deletions in a specific table.

50- Views:

In SQL, a view is a virtual table based on the result-set of an SQL

statement.

SELECT column_name,

CASE

WHEN condition1 THEN result1

WHEN condition2 THEN result2

ELSE result3

END

FROM table_name;

CREATE PROCEDURE procedure_name

AS

sql_statement

GO;

CREATE TRIGGER trigger_name

ON table_name

AFTER INSERT/UPDATE/DELETE

AS

sql_statement;

CREATE VIEW view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition;

2. Intermediate SQL Concepts:

1- Aliases:

SQL aliases are used to give a table, or a column in a table, a

temporary name.

2- Self-JOIN:

A self JOIN is a regular join, but the table is joined with itself.

3- GROUP_CONCAT():

This function concatenates strings from a group into a single string

with various options.

4- Handling Duplicates:

4.1- The following example uses the IGNORE keyword to prevent the insertion of

duplicate rows:

4.2- For the REPLACE keyword, if a duplicate is found, the old row is deleted

before the new row is inserted:

4.3- The ON DUPLICATE KEY UPDATE statement, on the other hand, updates the row

if a duplicate is found:

SELECT column_name AS alias_name FROM table_name;

SELECT column_name(s)

FROM table1 T1, table1 T2

WHERE condition;

SELECT GROUP_CONCAT(column_name SEPARATOR ', ') FROM table_name;

SQL provides several ways to handle duplicate records in a table - IGNORE,

REPLACE, and ON DUPLICATE KEY UPDATE.

INSERT IGNORE INTO table_name (column1, column2) VALUES ('value1', 'value2');

REPLACE INTO table_name (column1, column2) VALUES ('value1', 'value2');

INSERT INTO table_name (column1, column2) VALUES ('value1', 'value2')

ON DUPLICATE KEY UPDATE column1 = 'value1', column2 = 'value2';

5- Transactions:

Transactions group a set of tasks into a single execution unit.

6- Locking:

SQL uses locks to control concurrent access to data.

7- Indexing:

Indexing is used to speed up the retrieval of records on a database

table.

8- Normalization:

9- Denormalization:

10- Subquery:

A Subquery or Inner query or Nested query is a query within another SQL

query and embedded within the WHERE clause.

START TRANSACTION;

INSERT INTO table1 (column1) VALUES ('value1');

UPDATE table2 SET column2 = 'value2' WHERE column1 = 'value1';

DELETE FROM table3 WHERE column1 < 100;

COMMIT;

START TRANSACTION;

SELECT * FROM table_name WHERE column1 = 'value1' FOR UPDATE;

CREATE INDEX index_name

ON table_name (column_name);

Normalization is a database design technique which organizes tables in a

manner that reduces redundancy and dependency of data.

Denormalization is a strategy used on a previously-normalized database to

increase performance.

SELECT column_name(s) FROM table_name1 WHERE column_name operator (SELECT

column_name(s) from table_name2);

11- Join Optimization:

12- Cursor Manipulation:

SQL cursors are database objects used to manipulate rows from a result

set on a row-by-row basis.

13- Exception Handling:

Consider you have two tables, table1 and table2, and you are

performing a JOIN operation. Depending on the DBMS and the indexes

used, you might have different types of joins available, such as hash

join or merge join. Generally, DBMS takes care of choosing the

optimal join, but sometimes you may need to manually hint the join

type.

DECLARE @MyCursor CURSOR;

DECLARE @MyField VARCHAR(50);

BEGIN

SET @MyCursor = CURSOR FOR

SELECT MyField FROM MyTable WHERE MyCondition;

OPEN @MyCursor

FETCH NEXT FROM @MyCursor

INTO @MyField;

WHILE @@FETCH_STATUS = 0

BEGIN

-- Here is where you process each row.

FETCH NEXT FROM @MyCursor

INTO @MyField;

END;

CLOSE @MyCursor ;

DEALLOCATE @MyCursor;

END;

Handling SQL exceptions correctly is essential in building a robust

database application.

14- Array Manipulation:

 Arrays can be used in SQL to hold more than one value at a time.

15- JSON Data:

SQL Server 2016 and other modern databases provide support for storing,

querying, and indexing JSON data.

16- XML Data:

Many databases provide support for XML data and can query it using

XQuery.

17- Regular Expressions:

 Some databases support querying data using regular expressions.

18- Full-Text Search:

Full-text search is a technique for searching a computer-stored

document or database.

SELECT

json_extract(json_column, '$.key') as extracted_key

FROM

json_table;

SELECT

XQuery('for $t in //row return string($t/column_name)')

FROM

xml_table;

SELECT

column

FROM

table

WHERE

MATCH(column) AGAINST ('keyword');

19- Binary Data Handling:

 Binary large objects (BLOBs) can be stored in a SQL database.

21- Database Views:

A view is a virtual table based on the result-set of an SQL statement.

22- Database Collation:

CREATE VIEW view_name AS

SELECT column1, column2

FROM table_name

WHERE condition;

Collation is a set of rules that tell database engine how to compare

and sort the character data in SQL Server.

3. Advanced SQL Concepts:

1- Correlated Subqueries:

A correlated subquery, however, depends on the outer query. It's a

subquery that uses values from the outer query.

2- EXISTS:

The EXISTS operator is used to test for the existence of any record in

a subquery.

3- Common Table Expressions (CTEs):

A CTE provides the significant advantage of being able to reference

itself, thereby creating a recursive CTE.

4- PIVOT:

5- Window Functions:

SELECT column_name(s) FROM table_name1 outer WHERE column_name operator

(SELECT column_name(s) FROM table_name2 inner WHERE outer.column_name =

inner.column_name);

SELECT column_name(s) FROM table_name1 WHERE EXISTS (SELECT column_name FROM

table_name2 WHERE condition);

WITH RECURSIVE cte_name (column_name(s)) AS (

SQL query

)

SELECT * FROM cte_name;

Pivoting data can be achieved in SQL by using aggregate functions in

concert with a CASE statement in the query.

Window functions provide the ability to perform calculations across

sets of rows that are related to the current query row.

6- RANK():

The RANK() function is a window function that assigns a unique rank to

each row within the partition of a result set.

7- DENSE_RANK():

This function provides the same functionality as RANK(), but in the

event of a tie, it doesn't skip any ranks.

8- ROW_NUMBER():

This function assigns a unique row number for each row, but makes no

promise about what order that will be in, or even that the order will

be deterministic.

9- NTILE():

This function distributes the rows in an ordered partition into a

specified number of groups, or buckets, and assigns a unique bucket

number to each row in the partition.

10- LAG() and LEAD():

These functions fetch the value of a given expression for the previous

row (LAG) or the next row (LEAD) in the same result set without the use

of a self-join.

SELECT column_name(s), RANK() OVER (ORDER BY column_name) FROM table_name;

SELECT column_name(s), DENSE_RANK() OVER (ORDER BY column_name) FROM

table_name;

SELECT column_name(s), ROW_NUMBER() OVER (ORDER BY column_name) FROM

table_name;

SELECT column_name(s), NTILE(bucket_number) OVER (ORDER BY column_name) FROM

table_name;

SELECT column_name, LAG(column_name) OVER (ORDER BY column_name),

LEAD(column_name) OVER (ORDER BY column_name) FROM table_name;

11- FIRST_VALUE() and LAST_VALUE():

These functions return the first or the last value from an ordered set

of values in SQL.

12- CUME_DIST():

This function computes the cumulative distribution of a value in a

group of values in SQL. That is, CUME_DIST computes the relative

position of a specified value in a group of values.

13- PERCENT_RANK():

This function computes the relative rank of a row returned by a query

in SQL.

14- Database Administration:

15- Materialized Views:

16- Analytic Functions:

SELECT column_name, FIRST_VALUE(column_name) OVER (ORDER BY column_name),

LAST_VALUE(column_name) OVER (ORDER BY column_name) FROM table_name;

SELECT column_name, CUME_DIST() OVER (ORDER BY column_name) FROM table_name;

SELECT column_name, PERCENT_RANK() OVER (ORDER BY column_name) FROM

table_name;

This involves a wide array of operations, from managing users and

permissions, to performance optimization, backups, and migrating data

between systems.

These are similar to regular views, but the results are stored in a

physical table for performance gains.

These are a type of function that compute across a set of table rows

that are somehow related to the current row.

17- Sequences:

18- Synonyms:

19- Partitioning:

20- User-Defined Functions (UDFs):

UDFs are functions defined by the user at the database level.

21- Dynamic SQL:

Dynamic SQL allows programmers to write SQL statements that will be

executed at runtime.

Sequences are database objects from which multiple users may generate

unique integers.

A synonym is an alias for a database object, providing a layer of abstraction

that can simplify SQL statements for database users.

This is a technique to divide a large database table into smaller, more

manageable parts without having to create separate tables for each part.

CREATE FUNCTION function_name (@param1 int, @param2 nvarchar(50))

RETURNS TABLE

AS

RETURN

(

SELECT column1, column2

FROM table_name

WHERE column1 = @param1 AND column2 = @param2

);

DECLARE @column_name VARCHAR(100);

SET @column_name = 'column1';

EXEC('SELECT ' + @column_name + ' FROM table_name');

22- Recursive Queries:

Recursive queries are used to query hierarchical data.

23- Database Replication:

24- Database Sharding:

25- Database Migration:

26- Database Performance Tuning:

27- Distributed Databases:

WITH RECURSIVE recursive_query AS (

SELECT column1, column2

FROM table_name

WHERE condition1

UNION ALL

SELECT r.column1, r.column2

FROM table_name AS r

JOIN recursive_query AS rq ON r.column3 = rq.column1

)

SELECT * FROM recursive_query;

Replication is a set of technologies for copying and distributing

data and database objects from one database to another.

Sharding is a type of database partitioning that separates large

databases into smaller, faster, more easily managed parts.

The process of moving your data from one database engine to another.

A wide variety of practices used to make a database run faster.

A distributed database is a database that consists of two or more

files located in different sites either on the same network or on

entirely different networks.

28- Database Security:

29- Database Backup and Restoration:

 Essential operations for preserving and recovering data.

30- Cloud Databases:

31- Data Lake and Data Lakehouse:

Practices used to protect your database from intentional or

accidental threats, risks, or attacks.

Modern databases hosted on the cloud, providing benefits such as

scalability and flexibility.

A data lake is a storage repository that holds a vast amount of raw

data. A data lakehouse blends the best elements of a data warehouse

and a data lake.

4. Performance Tuning ConceptS:

1- Query Optimization:

2- Execution Plan:

3- Indexes Optimization:

4- Data Profiling:

5- Data Modeling:

6- Database Design:

This is the overall process of choosing the most efficient means of

executing a SQL statement.

An execution plan is the sequence of operations that will be

performed for a given query.

This is the process of choosing the right indexes for a database

table to improve query performance.

This is the process of examining the data available from an existing

information source and collecting statistics or informative summaries

about it.

This refers to the practice of documenting a complex software system

design as an easily understood diagram, using text and symbols to

represent the way data needs to flow.

This is the process of producing a detailed data model of a database.

This logical data model contains all the needed logical and physical

design choices and physical storage parameters needed to generate a

design in a data definition language.

7- Data Partitioning:

8- Parallel Execution:

9- Scalability:

10- Database Replication:

11- Backup and Recovery:

12- Concurrency Control:

13- Security and Authorization:

This is the process of splitting up a large table across multiple

storage locations in order to improve query performance.

This is the process of carrying out multiple tasks or sequences of

SQL operations simultaneously.

The capacity to handle increased workload by continually achieving

higher throughput when resources are added.

This is the process of copying a database from one server to another

so that all users share the same sort of data.

Backup is the process of making an extra copy of data that you can

use if the original data is lost or damaged. Recovery is the process

of restoring data that has been lost, stolen or damaged in a way that

makes it impossible for you to use it.

This is a database management systems (DBMS) concept that is used to

address conflicts with the simultaneous accessing or altering of data

that can occur with a multi-user system.

Database security concerns the use of a broad range of information

security controls to protect databases.

14- Data Consistency:

15- Deadlock Management:

16- Database Auditing:

17- Data Warehousing:

18- ETL:

The term data consistency is a state in a database where data is

consistent across all the rows of a table and across all the tables

of a database.

Deadlocks are a condition where two transactions cannot proceed

because each holds a lock that the other needs.

Auditing is a feature that provides an additional layer of security

by tracking the sequence of operations executed in the database.

A data warehouse is a large store of data collected from a wide range

of sources used to guide business decisions. This allows analysts,

managers, and executives to access large amounts of information for

strategic decision-making purposes.

Extract, Transform, Load (ETL) is a process that involves extracting

data from outside sources, transforming it to fit business needs, then

loading it into the end target (database, more specifically,

operational data store, data mart, or data warehouse).

	SQL Hand Book
	1. Basic SQL Concepts:
	2- Relational Databases:
	4- Columns:
	6- Data Types:
	8- FROM:
	10- INSERT INTO:
	11- UPDATE:
	12- DELETE:
	13- Operators:
	15- ORDER BY:
	16- DISTINCT:
	17- COUNT, AVG, SUM:
	18- GROUP BY:
	19- HAVING:
	20- CREATE DATABASE:
	21- DROP DATABASE:
	22- CREATE TABLE:
	23- DROP TABLE:
	24- ALTER TABLE:
	25- Constraints:
	27- FOREIGN KEY:
	28- CHECK:
	29- UNIQUE:
	30- INDEX:
	31- AUTO INCREMENT:
	32- DATE:
	33- NULL:
	34- IS NULL/IS NOT NULL:
	35- LIKE:
	37- BETWEEN:
	38- JOIN:
	39- INNER JOIN:
	40- LEFT (OUTER) JOIN:
	41- RIGHT (OUTER) JOIN:
	42- FULL (OUTER) JOIN:
	43- UNION:
	44- UNION ALL:
	45- SELECT INTO:
	46- INSERT INTO SELECT:
	47- CASE:
	48- Stored Procedure:
	49- TRIGGER:
	50- Views:

	2. Intermediate SQL Concepts:
	1- Aliases:
	2- Self-JOIN:
	3- GROUP_CONCAT():
	4- Handling Duplicates:
	5- Transactions:
	6- Locking:
	7- Indexing:
	8- Normalization:
	10- Subquery:
	11- Join Optimization:
	13- Exception Handling:
	15- JSON Data:
	16- XML Data:
	17- Regular Expressions:
	18- Full-Text Search:
	19- Binary Data Handling:
	21- Database Views:

	3. Advanced SQL Concepts:
	1- Correlated Subqueries:
	2- EXISTS:
	3- Common Table Expressions (CTEs):
	4- PIVOT:
	6- RANK():
	7- DENSE_RANK():
	8- ROW_NUMBER():
	9- NTILE():
	10- LAG() and LEAD():
	11- FIRST_VALUE() and LAST_VALUE():
	12- CUME_DIST():
	13- PERCENT_RANK():
	14- Database Administration:
	16- Analytic Functions:
	18- Synonyms:
	20- User-Deﬁned Functions (UDFs):
	21- Dynamic SQL:
	22- Recursive Queries:
	23- Database Replication:
	25- Database Migration:
	27- Distributed Databases:
	29- Database Backup and Restoration:
	30- Cloud Databases:

	4. Performance Tuning ConceptS:
	1- Query Optimization:
	3- Indexes Optimization:
	5- Data Modeling:
	7- Data Partitioning:
	9- Scalability:
	11- Backup and Recovery:
	13- Security and Authorization:
	15- Deadlock Management:
	17- Data Warehousing:

