Structured Query Language

Table of Contents

1 INtrodUuCtioN T0 SQL.......uuiiiiiiiiie ittt e e e e e e e e e s st e e e e e annees 6
Data Definition Language (DDL).....cccooieeiii i 8

Data Manipulation Language (DML) ...ccooeeeeeee e, 8

2 INtroduCtion tO SQL SEIVETciii ittt e e e et a e e e e s e aneeeees 9
SQL Server Management StUIOvvvviiiiiiiiiiiiiieeeceeeeeeeeeee et 10

Create @ NeW Database..........euiiiiiiiiiii 11

O LU= g 1= PP 12

3 CREATE TABLE. ... ettt ettt e bt e et e e ettt e e et s et e et e e e e ab e e e ebbanneaenes 13
Database Modellingcccoeiiieieeee e 15

Create Tables using the Designer TOOIScuvviiiiiiiiiiniiie e eeaaaes 17

SQL CONSErAINTS ..oovviiiiiiiiiiiiiiiiiiiicc i 17
PRIMARY KEY .. eiiiiiiiiiittiteie ittt e e s s 18

FOREIGN KEY .. iiiiiii ittt 19

NOT NULL / Required COlUMNSuuviieeieeeiiiiiiiiiieeeeee e st e e e e snnannnee e 22

UNIQUE ... ettt e s r e e e e e s as 23

CHECK ettt ettt e e e e r e e e e e s e e 25

DEFAULT L.ttt ettt e e e e et e e e s as 27

AUTO INCREMENT OF IDENTITY .oteiiiiiieiiiiiiiiii et 28

ALTER TABLE ...ttt e e e e e s a e e e e e 29

4 INSERT INTO ittt ettt e e e e e e s bbb et e e e e e e s a bbb e e eas 31
5 UP D ATE <.t e et e e e a e e 33

3
B DELETE ittt r e e e e e e e eaaeaaa 35

7 SELE T i 37

The ORDER BY K@YWOId ..ottt e e 39

SELECT DISTINCT .ettiiiiieeieiiiittt ettt ettt e ettt e e e e e e e e a bbb e e e e e e e e s e nnnbbnneeeeeas 40
THE WHERE ClIAUSEevviiiiiiiiiiiiiie ettt e e e e e 40
(0] o1=T) o PP SPPPTRRPPPP 41

[] Q0 o 1= - | o] ST PTTTPPPR PR 41

[N @] =T =) o PSP PP PP 42
BETWEEN OPrator...ccceue ittt a et e et abi e e eannae s 42

AL 1o 1= o PSPPSR 42
FAN A @ 1 @ o =] - | o] 3 P 43
SELECT TOP ClaUSE ..eeeieeeiiiiiiiieeee ettt e e et e e e e e s st eeeeas 44
A [L OO P PP PP PP PPPPPP PPN 45
JOINS e e et e e e e 45
Different SQLJOINSoiiiiiiiie et 46

< T © 1Y of T 3 48
L L1 = 0T 41010 1= o 48
Single-liNe COMMENT....cuui e 48
Multiple-lin€ COMMENT.......ccoviiiiii i 48
Variables .o 49
Built-in Global Variables ... 50
@ @IDENTITY oeieiieeiiiit ettt e e e e e s e s 50
FIOW CONTIOL ... 51
[F — ELSE ..ttt 51
WHILE oottt e e e e e e e e e e e e s s bbb e e e e e e e e 52
CASE ..t 53
CURSOR. ..ttt e et et e e e e et e e e e e e e s 54

Using the Graphical DESINETcooiiviiiiiiie e 57

10 SEOrEA PrOCEAUIESttt s bbbt e e e e e e bbb e e e e e e e e an 61
NOCOUNT ON/NOCOUNT OFFuviiiiiiiiieeeeiiiie e e e citee e e e sitee e e s sivea e e s snaeeaessnnneee e 64

11 0] o1 o PP 66
BUIIE-IN FUNCEIONS ...ttt e e e e a e e e e e e 66

SEANG FUNCHIONS .. e et e e e e aae 66

Date and Time FUNCLIONSuuviiiiiiiiiiiiiiiiiiee e e e 67

Mathematics and Statistics FUNCLIONSoevviiiiiiiiiiiiiiiicceee e 67

L1018 AVG() ceeeeeeeeeeeeeeeeee e ettt e et e et et ettt et e et e et ene e e en . 68
COUNT() tvveveeeeeeeeeee e eeeee et e e e st e et et et ee et et eeee et et eeeteseeiee et ee st st et s e et eseneens 68

The GROUP BY Statementcuviiiiiiiieiiiiiiiie et e e 69

THE HAVING ClaUSE ...vvveiiiieeiiiiiiiee ettt e e e e e e e e e e e e 70
User-defined FUNCLIONScccoiiiiiiiieiiiiie e 71

12 I 7= == 72
13 Communication from other APplicatioNnsc.coovviviiiiiiiiiii e 75
@] - PP 75

MICTOSOTE EXCOI ... 76

14 2] == 0 Lol 78

1Introduction to SQL

SQL (Structured Query Language) is a database computer language designed for managing

data in relational database management systems (RDBMS).

SQL, is a standardized computer language that was originally developed by IBM for querying,

altering and defining relational databases, using declarative statements.

SQL is pronounced /.cs kju: 'cl/ (letter by letter) or /'sizkwal/ (as a word).

SQL - Structured Query language

A Database Computer Language designed for Managing Data in
Relational Database Management Systems (RDBMS)

Query Examples:

insert into STUDENT (Name , Number, SchoolId)
values ('John Smith', '100005', 1)

select SchoolId, Name from SCHOOL
select * from SCHOOL where SchoolId > 100
update STUDENT set Name='John Wayne' where StudentId=2

delete from STUDENT where SchoolId=3

We have 4 different Query Types: INSERT, SELECT, UPDATE and DELETE

What can SQL do?

SQL can execute queries against a database
SQL can retrieve data from a database

SQL can insert records in a database

SQL can update records in a database

SQL can delete records from a database

Introduction to SQL

SQL can create new databases

SQL can create new tables in a database

SQL can create stored procedures in a database

SQL can create views in a database

SQL can set permissions on tables, procedures, and views

Even if SQL is a standard, many of the database systems that exist today implement their
own version of the SQL language. In this document, we will use the Microsoft SQL Server as

an example.

There are lots of different database systems, or DBMS — Database Management Systems,

such as:

Microsoft SQL Server
o Enterprise, Developer versions, etc.
o Express version is free of charge
Oracle
MySQL (Oracle, previously Sun Microsystems) - MySQL can be used free of charge
(open source license), Web sites that use MySQL: YouTube, Wikipedia, Facebook
Microsoft Access
IBM DB2
Sybase
... lots of other systems

In this Tutorial, we will focus on Microsoft SQL Server. SQL Server uses T-SQL (Transact-SQL).
T-SQL is Microsoft's proprietary extension to SQL. T-SQL is very similar to standard SQL, but
in addition it supports some extra functionality, built-in functions, etc.

Structured Query Language (SQL)

8 Introduction to SQL

Other useful Tutorials about databases:

e Introduction to Database Systems
e Database Communication in LabVIEW

These Tutorials are located at:

Data Definition Language (DDL)

The Data Definition Language (DDL) manages table and index structure. The most basic
items of DDL are the CREATE, ALTER, RENAME and DROP statements:

e CREATE creates an object (a table, for example) in the database.

e DROP deletes an object in the database, usually irretrievably.

e ALTER modifies the structure an existing object in various ways—for example, adding
a column to an existing table.

Data Manipulation Language (DML)

The Data Manipulation Language (DML) is the subset of SQL used to add, update and delete
data.

The acronym CRUD refers to all of the major functions that need to be implemented in a
relational database application to consider it complete. Each letter in the acronym can be
mapped to a standard SQL statement:

Operation sQL Description
Create INSERT INTO inserts new data into a
database
Read (Retrieve) SELECT extracts data from a database
Update UPDATE updates data in a database
Delete (Destroy) DELETE deletes data from a database

Structured Query Language (SQL)

http://www.halvorsen.blog/

2 Introduction to SQL Server

Microsoft is the vendor of SQL Server.

We have different editions of SQL Server, where SQL Server Express is free to download and
use.

SQL Server uses T-SQL (Transact-SQL). T-SQL is Microsoft's proprietary extension to SQL. T-
SQL is very similar to standard SQL, but in addition it supports some extra functionality, built-
in functions, etc. T-SQL expands on the SQL standard to include procedural programming,
local variables, various support functions for string processing, date processing,
mathematics, etc.

SQL Server consists of a Database Engine and a Management Studio (and lots of other stuff
which we will not mention here). The Database engine has no graphical interface - it is just a
service running in the background of your computer (preferable on the server). The
Management Studio is graphical tool for configuring and viewing the information in the
database. It can be installed on the server or on the client (or both).

Y

Database Engine Management Studio “\

&\ Microsoft SQL Server Management Studio
Fle Edit View Tools Window Community Help

I Newquery [y [5 =1
| | Object Explorer ~ 3 X Object Explorer Details -~ X
Connect - 37 33 A3 @ 9 @A T [E)B search »
= | PCBEZISIDEVELOPMENT (SQL Server 10.0.04 | | pcag23siDEVELOPMENT (SQL Server 10.0.2531 - sa)\Databases\TEST
= [Databases
3 [System Databases Name Policy Health State
| J scapa i Database Diagrams
=) 38 A Tables
+ [Database Diagrams - Views
= [Tables - Synonyms
(3 System Tables 3 Programmability
. . # 2 dbo.CLASS ~3s. Srokes
A Service running on the D 8 s 5001 ~rii
. # [Views
computer in the background 1 3 Synonyms
(3 Programmability < 5
(3 Service Broker
% [Security v J TEST
< >

Rea&y

A Graphical User Interface to the database used for
configuration and management of the database

10 Introduction to SQL Server

SQL Server Management Studio

SQL Server Management Studio is a GUI tool included with SQL Server for configuring,
managing, and administering all components within Microsoft SQL Server. The tool includes
both script editors and graphical tools that work with objects and features of the server. As
mentioned earlier, version of SQL Server Management Studio is also available for SQL Server
Express Edition, for which it is known as SQL Server Management Studio Express.

A central feature of SQL Server Management Studio is the Object Explorer, which allows the
user to browse, select, and act upon any of the objects within the server. It can be used to
visually observe and analyze query plans and optimize the database performance, among
others. SQL Server Management Studio can also be used to create a new database, alter any
existing database schema by adding or modifying tables and indexes, or analyze
performance. It includes the query windows which provide a GUI based interface to write
and execute queries.

[3;- Microsoft SQL Server Management Studio =35 ‘
(3) File_Edit View Query Debug Tools Window Community Help

bR =zda 58

mr
mr
»

%3 | scHooL » ¥ Execute b v i@ (E| 3" BEEN = 2@

iéﬁ"r’"SQL Server SQUQueryLal - P.SCHOOL (j Ay ~ x | [Propetties =

{ select * from SCHOOL ? Tl Current connection parameters ~
“71\& [PC88235\DEVELOPMENT (BQL Serve 0|2
=) | Databases -

Aggregate St
% [System Databases B Aggregate Status
| J LIBRARYSYSTEM ne

(3 Asiour Database Write your Query here
\ (1) SCHOOL
" @ [Database Diagrams
3 Tables
+# [System Tables
[dbo.CLASS
[dbo.COURSE B Connection

Your @ o dbo.GRADE Connection n PC83235\DEVELOS
=1 dbo.SCHOOL = A A

Tabless = deostuoent YE 2
7 = dbo.STUDENT_COUR [Resuts | [y Messages
[dbo.TEACHER Schoolld SchoolName Description Address Phone PostCode PostAddress
21 dbo.TEACHER_COURS 1. |8 Tuc The best school Telemark NULL NULL NULL
% (3 Views il 2 " miT OK School UsA NULL NULL NULL
© (3 Synonyms Bigl 3 NTNU The second best school ~ Trondhem NULL ~ NULL NULL
4 4

[Programmability Universty of Oslo The third best school Oslo NULL NULL NULL
% [Service Broker

[Storage
- ‘4) The result from your Query
5 [J WEATHERDATA
% [Security
%) [Server Objects

3 Renlicating
I

Bl Connection Details

Name
- The name of the connection.
» a Query executed successfully. PC88235\DEVELOPMENT (10.50 ... | sa (52) | SCHOOL | 00:00:00 | 4 rows

Ready Lnl Col21 Ch21 INS

When creating SQL commands and queries, the “Query Editor” (select “New Query” from
the Toolbar) is used (shown in the figure above).

With SQL and the “Query Editor” we can do almost everything with code, but sometimes it is
also a good idea to use the different Designer tools in SQL to help us do the work without
coding (so much).

Structured Query Language (SQL)

11 Introduction to SQL Server

Create a new Database

It is quite simple to create a new database in Microsoft SQL Server. Just right-click on the
“Databases” node and select “New Database...”

File Edit View Debug Tools ‘Window Community Help
Snewquery | [1y [5 =)

Object Explorer SQLO

Connect - Y &4 ﬂ ;

= | () PC8E235 (SQL Server 10.0.2531 - 5a)

= LA
Cas Mews Database. .,
= [T
£l Attach. ..
[Restore Database. .,
= Restore Files and Filegroups...
(d
4 Start PowerShel
(d
[Reports]
[Securi
£ Serve Refresh

[Replication
1 Management

There are lots of settings you may set regarding your database, but the only information you
must fill in is the name of your database:

F New Dalabase g@@
S cereie ;s Script = m Help
E" Options
A Filegroups Database name:
COwrier: <default>
[Dratabase files:
Logical Mame | File Type Filegroup Il Autogrowth
Rows Data FRIMARY 3 Bu1 ME. urrestricted growth
_log Log Not &pplicable 1 By 10 percent, unrestricted ar
Server
PCEEZ3E
Connection
sa
2 View cornection properties
Ready < >
Add

Structured Query Language (SQL)

12 Introduction to SQL Server

You may also use the SQL language to create a new database, but sometimes it is easier to
just use the built-in features in the Management Studio.

Queries

In order to make a new SQL query, select the “New Query” button from the Toolbar.

.'», Microsoft SQL Server Management Studio

Filz

il i ew
o Gomg | 1 - ¥ Execite B v 153 3 kg @Q_j = 2 EEEE AR

Object Explarer > o x SQLOQueryl.sql..ING {sa {53))* | Object Explorer Details b
Cornect = 43 &2 1= selsct * from CUSTOMEE

5 [PCBBZ3S\DEVELOPMENT (SGL Server 10.0.2531 - sa)

= [Databases @
[System Databases
® | IWOICING
® | SCADA
® | sCHooL
® | TEST

[Security

[Server Objects

[Replication

[Management

1 ry Debug Tools Window Community Help

=a" ==

»| %

You write your
5QL Code here

v
<
& Resuls | [Messages

Customerd | CustomerNumber | LastMame | FirstName ArsaCode | Addiess | Phone

1 1 fL] Smith John 12 Califomia 11111111 k3)
2 2 10Mm Jackson Smith 45 London 22222272

3 3 1002 Joknsen John 32 London 33333333

Your results will
appear in this
window

< 3 =a Query executed successFully.

PCE8235\DEVELOPMENT (10.05P1) sa(53) INVOICING 00:00:00 3 rows
Ready

Lni Col 23 Chz3 s

Here we can write any kind of queries that is supported by the SQL language.

Structured Query Language (SQL)

3CREATE TABLE

Before you start implementing your tables in the database, you should always spend some

time design your tables properly using a design tool like, e.g., ERwin, Toad Data Modeler,

PowerDesigner, Visio, etc. This is called Database Modeling.

ER Diagram (Entity-Relationship Diagram)

Foreign Keys)

Example:

* Used for Design and Modeling of Databases.
* Specify Tables and relationship between them (Primary Keys and

Database Desigh — ER Diagram

Table Name

L

Foreign Key

Table Name =——=> BOOK CHAPTER
PK | Bookld PK [Chapterld
7 X
BookTitle FK1 | Bookld ‘\>C0.umn
Summary ChapterNumk‘);;/ Names
/ ChapterTitle
’ Primary Key
Primary Key /

Relational Database. In a relational database all the tables have one or more relation with each other using Primary Keys
(PK) and Foreign Keys (FK). Note! You can only have one PK in a table, but you may have several FK’s.

The CREATE TABLE statement is used to create a table in a database.

Syntax:

CREATE TABLE table name
(

column namel data type,
column name2 data type,
column name3 data type,

)

The data type specifies what type of data the column can hold.

13

14 CREATE TABLE

You have special data types for numbers, text dates, etc.
Examples:

e Numbers: int, float

e Text/Stings: varchar(X) — where X is the length of the string
e Dates: datetime

e etc.

Example:

We want to create a table called “CUSTOMER” which has the following columns and data
types:

Column Mame Data Type Alloow rulls

M CustomerTd it]
Cuskomerhumber ink Fi
LastMarme warchar{50)]
FirstMarne warchar{50)]
AreaCode ink
Address warchar{50)
Phone warchar{20)

]

CREATE TABLE CUSTOMER
(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName wvarchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,

Best practice:

When creating tables you should consider following these guidelines:

e Tables: Use upper case and singular form in table names — not plural, e.g.,
“STUDENT” (not students)
e Columns: Use Pascal notation, e.g., “Studentid”
e Primary Key:
o If the table name is “COURSE”, name the Primary Key column “Courseld”, etc.

Structured Query Language (SQL)

15 CREATE TABLE

o “Always” use Integer and ldentity(1,1) for Primary Keys. Use UNIQUE
constraint for other columns that needs to be unique, e.g. RoomNumber
Specify Required Columns (NOT NULL) — i.e., which columns that need to have data
or not

Standardize on few/these Data Types: int, float, varchar(x), datetime, bit

Use English for table and column names

Avoid abbreviations! (Use RoomNumber — not RoomNo, RoomNr, ...)

Database Modelling

As mention in the beginning of the chapter, you should always start with database modelling
before you start implementing the tables in a database system.

Below we see a database model in created with ERwin.

STUDENT
Studentld ¢
Classld (FK)
StudentMame
StudentMumber
TotalGrade STUDENT_COURSE
AUIEES Studentld (FK)
Prieln T Courseld (FK)
EtAail
SCHOOL
GRADE COURSE Schoolld CLASS
cradeld Courseld SchoolName Classid
Studentld (FK) & [Description
Courseld (FK) foursetiame Address Steeiollel {i=1<)
Schaolld (FK) ClassMame
Grade O o Phone O it
Commenit escnpln ian PostCode escription
PostAddress
TEACHER_COURSE TEACHER
Teacherld (FK) ascheld
Courseld {FK) ! Schoolld (FK)
Teacheriame
Description

With this tool we can transfer the database model as tables into different database systems,
such as e.g., SQL Server. CA ERwin Data Modeler Community Edition is free with a 25 objects
limit. It has support for Oracle, SQL Server, MySQL, ODBC and Sybase.

Structured Query Language (SQL)

16 CREATE TABLE

Below we see the same tables inside the design tool in SQL Server.

SCHOOL
Column Name Data Type Allow Nulls CLASS
@ Sehoold ine =] Column Name Data Type Alow Nuls
SchoolName varchar(s0)] 9 Clsld " B
Desoiption warchar(1000) [Fil Sehoolld - B
Address varchar(50) [Ei] ClassName varchar(s0)]
Phare vaschar(50) = Desiption varchar(1000) &
PostCode varchar(50) [Fil B
PostAddress warchar(50) =
]
STUDENT
COURSE Column Name Datz Type Allow Nuls
Colemn Name Datz Type Allow Nulls STUDENT_COURSE ¢ Studentld int F
¥ Courseld int 1] ‘Cobumn Name Data Type Allowr Nulls o Classld int [
CourseName warchar(50) = Studentld int [} StudentName wvarchar{100) [}
Srhoolld int (] Courseld int (] o StudentNumber warchar(20) (]
Description warchar{1000) = A TorzlGrade flozt &
] [0 Addrass varchar{100) =
Phone varchar(20) =
EMail varchar{100) =
T B
TEACHER ; | orape
TEACHER_COURSE Column Name Datz Type Allow Nuls
Cohsmn Name Data Type Allow Nulls = N 5
§ Tescherld i B Column Name Datz Type Allow Nulls T Gradeld int]
E(hm‘.; it 0 TeachesId int] Studentld int A
} : Courseld int B Courseld int]
Tescherlia varchar(50) ke ! !
secreians v »cMA) |} B Grade float 0
Beserston varchar(1000) g Comment warchar{1000) @
=]

— Tips and Tricks

icrosoft SQL Server

File Edit View Query Project Debug Tools Window Help

Bl LS Ll GOl) Newuey [T CodeSppetsManager.. CubK CutoB | Do you get an error

H J | - v °
i 9) 7 | | WEATHER v| | ¢ Choose Toolbox Items... when trylng to
Connect~ %} %) m [_ﬂ 3 Import and Export Settings... change your tabIeS?
= |& WIN-OVDBU4QRDPIN\DEVELOPMENT (! Customize...
= [Databases s
) (2@ System Databases

[}

3 WEATHE oo 7 =
(3 Datal = =
[Tabl 4 Environment | Table Options
= 3 View G |
5 B8 Syno enera V| Override connection string time-out value for table designer
&2 Pro AutoRecover updates:
2 Documents

Find and Replace Transaction time-out after:

Fonts and Colors 30 seconds
Import and Export Settings .
International Settings Auto generate change scripts Ma ke sure to uncheck

Keyboard | Warn on null primary keys this option |
Startup V| Warn about difference detection

Web Browser
v|Warn about tables affected

Source Control
Text Editor Prevent saving changes that require table re-:reatitD
Query Execution

Diagram Options

Que.ry Results Default table view: Column Names -
Designers
SQL Server AlwaysOn v|Launch add table dialog on new diagram

SQL Server Object Explorer

[ok][cancel

Structured Query Language (SQL)

17

CREATE TABLE

Create Tables using the Designer Tools

Even if you can do “everything” using the SQL language, it is sometimes easier to do it in the

designer tools in the Management Studio in SQL Server.

Instead of creating a script you may as well easily use the designer for creating tables.

Stepl: Select “New Table ...”:

=l [Dakabases
+ [Swstem Databases
= [TEST
+ [Database Diagrams

o [e

¥ Mew Table. ..

Filker

Start PoveerShell

= W

+
+
+
+
= [3
+

=i Refresh

Reports

I

3

+ [Programmability
4 [Service Broker
+ [Security

+ [Security

+ [Server Objects

+ [Replication

+ [Management

Step2: Next, the table designer pops up where you can add columns, data types, etc.

Colurmn Mame Daka Tvpe Allawy Mulls

M CustamerId ink Fl
Customerhumber ink Fi
LastMame warchar{50) Fi
FirskMarne warchar{50) Fi
AreaCode ink
Address warchar{50)
Phone warchar{20)

[l

In this designer we may also specify Column Names, Data Types, etc.

Step 3: Save the table by clicking the Save button.

SQL Constraints

Constraints are used to limit the type of data that can go into a table.

Structured Query Language (SQL)

18 CREATE TABLE

Constraints can be specified when a table is created (with the CREATE TABLE statement) or
after the table is created (with the ALTER TABLE statement).

Here are the most important constraints:

e PRIMARY KEY

e NOT NULL

e UNIQUE

e FOREIGN KEY
e CHECK

e DEFAULT

e |DENTITY

In the sections below we will explain some of these in detail.

PRIMARY KEY

The PRIMARY KEY constraint uniquely identifies each record in a database table.

Primary keys must contain unique values. It is normal to just use running numbers, like 1, 2,
3,4, 5, ... as values in Primary Key column. It is a good idea to let the system handle this for
you by specifying that the Primary Key should be set to identity(1,1). IDENTITY(1,1) means
the first value will be 1 and then it will increment by 1.

Each table should have a primary key, and each table can have only ONE primary key.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]
(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar(50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone wvarchar (50) NULL,

)
GO

As you see we use the “Primary Key” keyword to specify that a column should be the
Primary Key.

Customerld™, CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

e Primary Keys must contain unigue i

numbers like this P222020
TOTITETTT TTOTmT [r.— COTTaaTT T 333333

Structured Query Language (SQL)

19 CREATE TABLE

Setting Primary Keys in the Designer Tools:

If you use the Designer tools in SQL Server, you can easily set the primary Key in a table just
by right-click and select “Set primary Key”.

PCE8235\DEVELOP...EST - dbo SCHOOL* < EeljSad il =M= w1

Colurmn Name Data Type Allow Mulls

b | Schoolld int

Set Prirnary Key

Insert Column

[
L_"‘E el

vel

Delete Column

[n]
!
s]s}

Relationships...

Indexes/Keys...

e I e Y

AML Indexes...
Check Constraints...

Spatial Indexes...

s T e |

Generate Change Script...

Properties Alt+Enter

0

The primary Key column will then have a small key % in front to illustrate that this column is
a Primary Key.

FOREIGN KEY

A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

Example:
CLASS
SCHOOL Column Mame Data Twpe Allow Mulls
Calumn Mame Diata Type Al Mulls T Classld it O
% Schoolld int E 3 Schooltd int O
SchoolName varchar(50) E Classhame warchar{50) |
Diescription varchar(1000) Description warchar({1000}
address varchar(S0) |
Phone varchar(S0)
PostiCode varchar(S0)
Postaddress varchar(S0)
O

We will create a CREATE TABLE script for these tables:

Structured Query Language (SQL)

20 CREATE TABLE

SCHOOL:

CREATE TABLE SCHOOL
(
SchoollId int IDENTITY (1,1) PRIMARY KEY,
SchoolName varchar (50) NOT NULL UNIQUE,
Description varchar (1000) NULL,
Address varchar (50) NULL,
Phone wvarchar (50) NULL,
PostCode varchar (50) NULL,
PostAddress varchar (50) NULL,

)
GO

CLASS:

CREATE TABLE CLASS
(
ClassId int IDENTITY (1,1) PRIMARY KEY,
SchoolId int NOT NULL FOREIGN KEY REFERENCES SCHOOL (SchoolId),
ClassName varchar (50) NOT NULL UNIQUE,
Description varchar (1000) NULL,

)
GO

The FOREIGN KEY constraint is used to prevent actions that would destroy links between
tables.

The FOREIGN KEY constraint also prevents that invalid data from being inserted into the
foreign key column, because it has to be one of the values contained in the table it points to.

Setting Foreign Keys in the Designer Tools:

If you want to use the designer, right-click on the column that you want to be the Foreign
Key and select “Relationships...”:

Structured Query Language (SQL)

21 CREATE TABLE

PCEE2S5\DEVELOPM...TEST - dbo.CLASS < RelflSad STl = g0 = 1

Column Mame Data Type Allow Nulls
% Classld int
b Schoolld int
¥ Set Primary Key
W' Insert Column .]

' Delete Column

=5 Relationships...
=] Indexes/Keys...
== Fulltext Index...
=1 XML Indexes...
Check Constraints...
E Spatial Indexes...
Generate Change Script...

‘= Properties Alt+Enter

The following window pops up (Foreign Key Relationships):

Foreign Key Relationships ?
Selected Relationship:
[FK_CLASS_CLASS* [Editing properties for new relationship. The 'Tables And Columns
Specification' property needs to be filled in before the new relationship will be
accepted.
4 (General) @ -
Check Existing Data On Creati Yes /T

m

Foreign Key
Primary/Unique
Primary/Unique Key Colu Classld
4 Identity
(Name) FK_CLASS_CLASS

Description
@ 4 Table Designer =
L L

| Add || Delete | ———

Click on the “Add” button and then click on the small “...” button. Then the following window
pops up (Tables and Columns):

Structured Query Language (SQL)

22 CREATE TABLE

rTal:}lvas and Colurnns @

Relaticnship name:

FE_CLASS_SCHOOL

Prirnary key table: @ Foreign key table: @

| SCHOOL - cLass
Schoolld -+ Schoolld
Select Primary Select Foreign
Key Column Key Column

[Ok l | Cancel

Here you specify the primary Key Column in the Primary Key table and the Foreign Key
Column in the Foreign Key table.

NOT NULL / Required Columns

The NOT NULL constraint enforces a column to NOT accept NULL values.

The NOT NULL constraint enforces a field to always contain a value. This means that you
cannot insert a new record, or update a record without adding a value to this field.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]
(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,

Structured Query Language (SQL)

23 CREATE TABLE

We see that “CustomerNumber”, “LastName” and “FirstName” is set to “NOT NULL", this
means these columns needs to contain data. While “AreaCode”, “Address” and “Phone” may
be left empty, i.e, they don’t need to be filled out.

Note! A primary key column cannot contain NULL values.

Setting NULL/NOT NULL in the Designer Tools:

In the Table Designer you can easily set which columns that should allow NULL or not:

. PCB8235\DEVELOP...EST - dbo SCHOOL > gelajl=ad S8 lT = g 0wl

Colurmn Name Data Type Allow Nulls
b2 Schoolld - int
. SchoolMame . varchar(0)
Description varchar(1000]]
Address varchar(30]]
Phone varchar(30]]
PostCode varchar(s0) 7
PostAddress varchar(0) \ 7 !

UNIQUE

The UNIQUE constraint uniquely identifies each record in a database table. The UNIQUE and
PRIMARY KEY constraints both provide a guarantee for uniqueness for a column or set of
columns.

A PRIMARY KEY constraint automatically has a UNIQUE constraint defined on it.

Note! You can have many UNIQUE constraints per table, but only one PRIMARY KEY
constraint per table.

If we take a closer look at the CUSTOMER table created earlier:

CREATE TABLE [CUSTOMER]

(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,

Structured Query Language (SQL)

24 CREATE TABLE

Phone varchar (50) NULL,

)
GO

We see that the “CustomerNumber” is set to UNIQUE, meaning each customer must have a
unigue Customer Number. Example:

LastMame | Firsthame | AreaCode | Address Phone

1 Smith John 12 California 11111111
2 Jackzon Srith 45 Londan SRR
Johnzen John 32 Landan 33333333

Setting UNIQUE in the Designer Tools:

If you want to use the designer, right-click on the column that you want to be UNIQUE and
select “Indexes/Keys...”:

PC88235\DEVELOP...EST - dbo.SCHOOL X EeljEadaylld=gn= i

Column Name Data Type Allow Mulls
% Schoolld int
» L e
o ¥ Set Primary Key
Description U
f Insert Column
Address
71"' Delete Column
Phone
Jf_g Relationships...
PostCode
Indexes/Keys...
PostAddress B)
XML Indexes...

Check Constraints...

El @ st 30 @

Spatial Indexes...

Properties Alt+Enter

Then click “Add” and then set the “Is Unique” property to “Yes”:

Structured Query Language (SQL)

25 CREATE TABLE

Indexes/Keys i £2

Selected Primary/Unique Key or Index:

I{_SCHOOL* Editing properties for new unique key or index.

PK_SCHOOL
2)

A_ (General)

Columns Schoolld (ASC)
onigue | B
Type
4 [dentity Mo
(MName) T SUHUUT
Description

4 Table Designer
Create As Clustered Mo
» Data Space Specification PRIMARY

0 - Fill Specification il
.
| Add || Delete —

CHECK

The CHECK constraint is used to limit the value range that can be placed in a column.

If you define a CHECK constraint on a single column it allows only certain values for this
column.

If you define a CHECK constraint on a table it can limit the values in certain columns based
on values in other columns in the row.

Example:

CREATE TABLE [CUSTOMER]
(
CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE CHECK (CustomerNumber>0),
LastName varchar(50) NOT NULL,
FirstName wvarchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone wvarchar (50) NULL,

)
GO

In this case, when we try to insert a Customer Number less than zero we will get an error
message.

Setting CHECK constraints in the Designer Tools:

If you want to use the designer, right-click on the column where you want to set the
constraints and select “Check Constraints...”:

Structured Query Language (SQL)

26 CREATE TABLE

PCEE235\DEVELOP...- dbo.CUSTOMER < ReliZad Syl gl w11

Column Mame Data Type Allow Mulls
% Customerld int [l
CustomerMame varchar(50) [l
> imt =
Address 'fu Set Primary Key
Phone 1 Insert Column
PostCode Wt Delete Column
PostAddress 73 Relationships...
EMail ;i:l Indexes/Keys...
ae Culltext Index...
=1 XML Indexes...
Check Constraints...
E Spatial Indexes...
Generate Change Script...
‘== Properties Alt+Enter

Then click “Add” and then click “...” in order to open the Expression window:

Check Constraints @

Selected Check Constraint:

CK_CUSTOMER™ Editing properties for new check constraint. The 'Expression’ property needs
to be filled in before the new check constraint will be accepted.

4 (General) @)_
7.
4 Identity
(Mame) CK_CUSTOMER
Description
4 Table Designer
Check Existing Data On Creati Yes
Enforce For INSERTs And UPC Yes

Enforce For Replication Yes

1)

[*’Add H Delete J

In the Expression window you can type in the expression you want to use:

Structured Query Language (SQL)

27

CREATE TABLE

e

Check Constraint Expression @
Expression:
CustomerMumber=0 e
QK] I Cancel

DEFAULT

The DEFAULT constraint is used to insert a default value into a column.

The default value will be added to all new records, if no other value is specified.

Example:

CREATE TABLE [CUSTOMER]

(

CustomerId int IDENTITY (1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar(50) NOT NULL,

FirstName varchar (50) NOT NULL,

Country varchar (20) DEFAULT 'Norway',
AreaCode int NULL,

Address varchar (50) NULL,

Phone varchar (50) NULL,

)
GO

Setting DEFAULT values in the Designer Tools:

Select the column and go into the “Column Properties”:

4

Column Properties |

B

4 [General)
(Mame) Country
Allow Mulls Yes
Data Type varchar
Defaukt Valueorfindng [O
Length 50

Structured Query Language (SQL)

28 CREATE TABLE

AUTO INCREMENT or IDENTITY

Very often we would like the value of the primary key field to be created automatically every
time a new record is inserted.

Example:

CREATE TABLE CUSTOMER
(
CustomerId int IDENTITY(1,1) PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar(50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,

)
GO

As shown below, we use the IDENTITY() for this. IDENTITY(1,1) means the first value will be 1
and then it will increment by 1.

Setting identity(1,1) in the Designer Tools:

We can use the designer tools to specify that a Primary Key should be an identity column
that is automatically generated by the system when we insert data in to the table.

Click on the column in the designer and go into the Column Properties window:

Column Properties

Data Type int
Default Value or Binding
4 Table Designer
Collation <database default>

> Computed Column Specification

Condensed Data Type int
Description
Deterministic Yes
DT5-published No
» Full-text Specification No
Has Non-S0L Server Subscriber No
4 Identity Specification Yes
{Is Identity) Yes [=]
Identity Increment 1
Identity Seed 1
Indexable Yes
Is Columnset No
Is Sparse No

Structured Query Language (SQL)

m

29 CREATE TABLE

ALTER TABLE

The ALTER TABLE statement is used to add, delete, or modify columns in an existing table.

To add a column in a table, use the following syntax:

ALTER TABLE table name
ADD column name datatype

To delete a column in a table, use the following syntax (notice that some database systems
don't allow deleting a column):

ALTER TABLE table name
DROP COLUMN column name

To change the data type of a column in a table, use the following syntax:

ALTER TABLE table name
ALTER COLUMN column name datatype

If we use CREATE TABLE and the table already exists in the table we will get an error
message, so if we combine CREATE TABLE and ALTER TABLE we can create robust database
scripts that gives no errors, as the example shown below:

if not exists (select * from dbo.sysobjects where id = object id(N'[CUSTOMER]') and
OBJECTPROPERTY (id, N'IsUserTable') = 1)
CREATE TABLE CUSTOMER
(
CustomerId int PRIMARY KEY,
CustomerNumber int NOT NULL UNIQUE,
LastName varchar (50) NOT NULL,
FirstName varchar (50) NOT NULL,
AreaCode int NULL,
Address varchar (50) NULL,
Phone varchar (50) NULL,

if exists(select * from dbo.syscolumns where id = object id(N'[CUSTOMER]') and
OBJECTPROPERTY (id, N'IsUserTable') = 1 and name = 'CustomerId')

ALTER TABLE CUSTOMER ALTER COLUMN CustomerId int

Else

ALTER TABLE CUSTOMER ADD CustomerId int

GO

if exists(select * from dbo.syscolumns where id = object id(N'[CUSTOMER]') and
OBJECTPROPERTY (id, N'IsUserTable') = 1 and name = 'CustomerNumber')
ALTER TABLE CUSTOMER ALTER COLUMN CustomerNumber int

Structured Query Language (SQL)

30

CREATE TABLE

Else
ALTER TABLE CUSTOMER ADD CustomerNumber int

GO

Structured Query Language (SQL)

4INSERT INTO

The INSERT INTO statement is used to insert a new row in a table.
It is possible to write the INSERT INTO statement in two forms.

The first form doesn't specify the column names where the data will be inserted, only their
values:

INSERT INTO table name
VALUES (valuel, value2, value3,...)

Example:

INSERT INTO CUSTOMER VALUES ('1000', 'Smith', 'John', 12,
'California', '11111111")

The second form specifies both the column names and the values to be inserted:

INSERT INTO table name (columnl, column2, column3,...)
VALUES (valuel, wvalue2, value3,...)

This form is recommended!

Example:

INSERT INTO CUSTOMER (CustomerNumber, LastName, FirstName, AreaCode,
Address, Phone)
VALUES ('1000', 'Smith', 'John', 12, 'California', '"11111111")

Insert Data Only in Specified Columns:

It is also possible to only add data in specific columns.

Example:

INSERT INTO CUSTOMER (CustomerNumber, LastName, FirstName)
VALUES ('1000', 'Smith', 'John')

Note! You need at least to include all columns that cannot be NULL.

We remember the table definition for the CUSTOMER table:

31

32

INSERT INTO

Column Mame

Data Type

M CuskomerId

it

CustomerMurnber
LastMame
Firsthame
AreaCode
Address

Phone

ink
warchar({S0)
warchar({S0)
ink
warchar{50)
warchar(Z0)

Allawy Mulls

00O

OFEEDOO

i.e., we need to include at least “CustomerNumber”, “LastName” and “FirstName”.

“Customerld” is set to “identity(1,1)” and therefore values for this column are generated by

the system.

Insert Data in the Designer Tools:

When you have created the tables, you can easily insert data into them using the designer

tools. Right-click on the specific table and select “Edit Top 200 Rows”:

- 1 Tables
+ [System Tables
+ [FileTables
& dboAUTHOR
7 = dbo.BOCOK

7 = dbo.BOOK_LIBRARY

7 [E dbo.CATEGORY
7 & dbo.CHAPTER
> @
7 & dbo.lIBRARY
7 = dbolOAN
7 & dbo.PUBLISHER
7 dbo.RATING

T [Views

+ [Synonyms

+ [Prograrmmability

Then you can enter data in a table format, similar to, e.g., MS Excel:

Mew Table...
Design

Select Top 1000 Rows

Edit Top 200 Rows
Script Table as

View Dependencies

PC88235\DEVELOP...- dbo.CUSTOMER < geliEadaiadl I SgrE el

Customerld CustomerMame CustomerMu... Address
» i Bill Clinton 1000 NULL
Jens Stoltenberg 1001 NULL
Barak Obama 1002 NULL
* WNULL NULL NULL NULL

Phone PostCode
NULL NULL
NULL NULL
NULL NULL
NULL NULL

PostAddress

NULL
NULL
NULL
NULL

EMail
NULL
NULL
NULL
NULL

Country
NULL
NULL
NULL
NULL

Structured Query Language (SQL)

SUPDATE

The UPDATE statement is used to update existing records in a table.

The syntax is as follows:

UPDATE table name
SET columnl=value, columnz2=value?, ...
WHERE some column=some value

Note! Notice the WHERE clause in the UPDATE syntax. The WHERE clause specifies which
record or records that should be updated. If you omit the WHERE clause, all records will be
updated!

Example:

update CUSTOMER set AreaCode=46 where CustomerId=2

Before update:

Custormerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 1000 Smith John California 11111111
2 1001 Jackzon Smith G Londaor)
3 3 1002 Johnzen Jahn Landan 33333333
After update:
Custornerld | Customerfumber | Lastblame | FirstMame | AreaCode | Address Phone
1 i1 : 1000 Smith Johin 1 Califorria 11111111
2 2 1001 Jackzon Smith Londaon 2ELEIEL
3 3 1002 Johnzen Jahn Landan 33333333

If you don’t include the WHERE clause the result becomes:

Custornerld | CustomerMumber | LastMame | Firgth ame Addresz FPhone

1 1 1000 Smith John California 111111711
2 2 1001 Jackzon Smith London 22
3 3 1002 Johnzen Jahn Londan 33333333

— So make sure to include the WHERE clause when using the UPDATE command!

33

34 UPDATE

Update Data in the Designer Tools:

The same way you insert data you can also update the data. Right-click on the specific table
and select “Edit Top 200 Rows”:

- 1 Tables
+ [Systern Tables
+ [FileTables
7 = dbo AUTHOR
= dbo.BOOK
7 = dbo.BOCOK_LIBRARY
7 = dbo.CATEGORY
7 = dbo.CHAPTER

=g dbo. CUSTOMER

= dbo.LIBRARY New Table...

71 = dbolOAN Design

7 = dbo.PUBLISHER Select Top 1000 Rows

5 B dboRATING Edit Top 200 Rows
+ [Views
¥ [Synonyms Script Table as b
+ [Programmability View Dependencies

Then you can change your data:

PC88235\DEVELOP...- dbo.CUSTOMER < geliEadaiadl I SgrE el

Custormerld CustomerMame CustomerMu... Address Phone PostCode PostAddress EMail Country
» | Bill Clinton 1000 NULL NULL NULL NULL NULL NULL
Jens Stoltenberg 1001 NULL NULL NULL NULL NULL NULL
Barak Obama 1002 NULL NULL NULL NULL NULL NULL
* WNULL NULL NULL NULL NULL NULL NULL NULL NULL

Structured Query Language (SQL)

6 DELETE

The DELETE statement is used to delete rows in a table.

Syntax:

DELETE FROM table name
WHERE some column=some value

Note! Notice the WHERE clause in the DELETE syntax. The WHERE clause specifies which
record or records that should be deleted. If you omit the WHERE clause, all records will be
deleted!

Example:

delete from CUSTOMER where CustomerId=2

Before delete:

Customnerld | Customerfumber Lastbame | Firsttame | AreaCode | Address Phone

1 i1 1000 Smith John 12 California 11111111
2 2 1001 Jackzan Smith 45 Landan 2ELDI22L
3 3 1002 Johnzen John 32 Londaon 33333333

After delete:

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address FPhone

1 i1 £ 1000 Smith John 12 Califarnia 11111111

2 3 1002 Johnzen Jahn 32 Landar 33333333

Delete All Rows:

It is possible to delete all rows in a table without deleting the table. This means that the
table structure, attributes, and indexes will be intact:

DELETE FROM table name

Note! Make sure to do this only when you really mean it! You cannot UNDO this statement!

Delete Data in the Designer Tools:

You delete data in the designer by right-click on the row and select “Delete”:

35

36 DELETE

PCBE235NDEVELOP...- dbo.CUSTOMER < EelJEad=idlIEdisni

Customerld CustomerMame CustomerMu... Address Phone PostCode
1 Bill Clinton 1000 NULL NULL NULL
2 lens Stoltenberg 1001 MNULL MNULL MNULL
[; —_— 1002 NULL NULL NULL
g | 0 EeecutesQL CirlR NULL NULL NULL NULL
52 Copy Ctrl+C
7 Delete Del
Pane k

i3 Clear Results

‘= Properties Alt+Enter

Structured Query Language (SQL)

/SELECT

The SELECT statement is probably the most used SQL command. The SELECT statement is
used for retrieving rows from the database and enables the selection of one or many rows or
columns from one or many tables in the database.

We will use the CUSTOMER table as an example.

The CUSTOMER table has the following columns:

Zolumn Mame Diata Twpe Allow Mulls
P CuskarmerId Lint]
Customer Mumber warchar(20)]
LastMame warchar{50)]
FirstMarne varchar{50)]
AreaCode ik
Address varchar{50)
Fhone warchar{ 20)

The CUSTOMER table contains the following data:

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i 1000 Sriith Jahn 12 Calfarnia 11111171
2 100 Jackszon Smith 45 Londaon R
1002 Johnzen John 3z London 33333333
Example:

select * from CUSTOMER

Customnerld | Customerfumber | Lastbame | Firsttlame | AreaCode | Addiess Phone

1 1000 Smith Jahn 12 Califarnia 11111111
2 1001 Jackszon Smith 45 London)
3 1002 Johhzen John 32 Londaon 33333333

This simple example gets all the data in the table CUSTOMER. The symbol “*” is used when
you want to get all the columns in the table.

37

38 SELECT

If you only want a few columns, you may specify the names of the columns you want to
retrieve, example:

select CustomerId, LastName, FirstName from CUSTOMER

Custornerld | LastMame | Firgth ame

1 i1 ¢ Smith Johin
2 2 Jackzon Smith
3 3 Jokinzen Jahn

So in the simplest form we can use the SELECT statement as follows:

select <column names> from <table names>

If we want all columns, we use the symbol “*”
Note! SQL is not case sensitive. SELECT is the same as select.

The full syntax of the SELECT statement is complex, but the main clauses can be summarized
as:

SELECT
[ALL | DISTINCT]
[TOP (expression) [PERCENT] [WITH TIES]]
select list [INTO new table]
[FROM table source] [WHERE search condition]
[GROUP BY group by expression]
[HAVING search condition]
[ORDER BY ordez_expression [ASC | DESC 1]

It seems complex, but we will take the different parts step by step in the next sections.

Select Data in the Designer Tools:

Right-click on a table and select “Select Top 1000 Rows”:

e

[Constraints
3 Triggers
[Indexes
[Statistics

= [Tables
+ [System Tables
+ [FileTables
& dbeAUTHOR
= dbo.BOOK
=] dbo.BOOK_LIBRARY
=] dbo.CATEGORY
= dbo.CHAPTER
=
= dba.LIBRARY New Table...
= dbo.LOAN Design
= dbo.PUBLISHER Select Top 1000 Rows
£ dbo.RATING
+ [Views
+ [Synonyms
= (3 Programmability View Dependencies
+ [Service Broker

&
&
&
&
&
&
&
&
Edit Top 200 Rows

Script Table as 3

Full-Tewt indew

The following will appear:

Structured Query Language (SQL)

39 SELECT

SQLQuertsa - PC. 88235\hansha 58) X
JrE¥E:EE qepipt for SelectTopNRows command from SSMS ¥Fxsex/
—|SELECT TOP 1888 [CustomerId]
, [Customeriame]
, [Customeriumber]
, [Address]
» [Phene]
, [PostCode]
, [PostAddress]
,» [EMail]
, [Country]
FROM [LIBRARYSYSTEM]. [dbe].[CUSTOMER]

100 % - 4
T Results -3 Messages

Customerld CustomerMName CustomerNumber Address Phone PostCode PostAddress EMail

Country
1 i1 | Bill Clinton 1000 NULL NULL NULL NULL NULL NULL
2 2 Jens Stokenberg 1001 NULL NULL NULL NULL NULL NULL
3 3 Barsk Obama 1002 NULL NULL NULL NULL NULL NULL

A Select query is automatically created for you which you can edit if you want to.

The ORDER BY Keyword

If you want the data to appear in a specific order you need to use the “order by” keyword.

Example:

select * from CUSTOMER order by LastName

Customer Customerumber | LastMame | FrstMame | AreaCode | Address Phone

1 1001 Jackzon Srnith 45 Londan 22222222
2 3 1002 Johnzen Jahn 32 Landan 33333333
1 1000 Smith John 12 Calfornia 111111711

You may also sort by several columns, e.g. like this:

select * from CUSTOMER order by Address, LastName

Customerld | CustomerMumber | LastMame | Firstlame | AreaCode | Address Phone

1 1 {1000 Smith John 12 California 11111111
2 2 1001 Jackzan Srrith 45 Landan 2EA2I22
3 3 1002 Johnzen John 32 London F3333333

If you use the “order by” keyword, the default order is ascending (“asc”). If you want the
order to be opposite, i.e., descending, then you need to use the “desc” keyword.

Structured Query Language (SQL)

40 SELECT

select * from CUSTOMER order by LastName desc

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Addiess FPhone
1 i1 E 1000 Sriith Jahi 12 Califarmia 111111711
2 3 1002 Johnzen John 32 London 33333333

3 2 1001 Jackzon Smith 45 London 22

SELECT DISTINCT

In a table, some of the columns may contain duplicate values. This is not a problem,
however, sometimes you will want to list only the different (distinct) values in a table.

The DISTINCT keyword can be used to return only distinct (different) values.

The syntax is as follows:

select distinct <column names> from <table names>

Example:

select distinct FirstName from CUSTOMER

FirztM ame
1 John
2 Smith

The WHERE Clause

The WHERE clause is used to extract only those records that fulfill a specified criterion.

The syntax is as follows:

select <column names>
from <table name>
where <column name> operator value

Example:

select * from CUSTOMER where CustomerNumber='1001"

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Addresz | Phone

1 iz : 1001 Jackson Smith 45 London 22222222

Structured Query Language (SQL)

41 SELECT

Note! SQL uses single quotes around text values, as shown in the example above.

Operators

With the WHERE clause, the following operators can be used:

Operator Description
= Equal
<> Not equal
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal
BETWEEN Between an inclusive range
LIKE Search for a pattern
IN If you know the exact value you want to return for at least one of the
columns
Examples:

select * from CUSTOMER where AreaCode>30

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Addrezs Phone

1 2 F10m Jackson Srnith 45 London 22222222

2 3 1002 Johnzen Jahn 32 London 33333333

LIKE Operator

The LIKE operator is used to search for a specified pattern in a column.

Syntax:

SELECT column name (s)
FROM table name
WHERE column name LIKE pattern

Example:

select * from CUSTOMER where LastName like 'J%'

Custarnerld | CustomerMumber | LaztMame | FirstMame | AreaCode | Address | Phone

1 &2 £ 10 Jackson Smith 45 London 22222222

2 3 1002 Johnzen John 32 London 33333333

Note! The "%" sign can be used to define wildcards (missing letters in the pattern) both
before and after the pattern.

Structured Query Language (SQL)

42 SELECT

select * from CUSTOMER where LastName like '%a$%$'

Customerld | CustomerMumber | Lazthame | FirstMame | AreaCode | Addresz | Phone

1 2 £ 100 Jackszon Smith 45 London 22222222

You may also combine with the NOT keyword, example:

select * from CUSTOMER where LastName not like '%a%'

Cuztomerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 E 1000 Smith John 12 California 11111171
2 3 1002 Johnzen Jahn 32 Landar 33333333
IN Operator

The IN operator allows you to specify multiple values in a WHERE clause.

Syntax:

SELECT column name (s)
FROM table name
WHERE column name IN (valuel,valueZ,...)

BETWEEN Operator

The BETWEEN operator selects a range of data between two values. The values can be
numbers, text, or dates.

Syntax:

SELECT column name (s)

FROM table name

WHERE column name
BETWEEN valuel AND value?2

Wildcards

SQL wildcards can substitute for one or more characters when searching for datain a
database.

Note! SQL wildcards must be used with the SQL LIKE operator.

With SQL, the following wildcards can be used:

Structured Query Language (SQL)

43

SELECT
Wildcard Description
% A substitute for zero or more characters
_ A substitute for exactly one character
[charlist] Any single character in charlist
[~charlist] Any single character not in charlist
or

['charlist]

Examples:

SELECT * FROM CUSTOMER WHERE LastName LIKE 'J cks n'

Custornerld | CustomerMumber | LastMame | FirstMame | AreaCode | Addresz | Phone

L - 10 Jackson Smith 45 London 22222222

SELECT * FROM CUSTOMER WHERE CustomerNumber LIKE '[10]%'

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address FPhone

1 1 ;1000 Smith Jahn 12 Calformia 11111111
2 2 1001 Jackson Srith 45 London 2EARIEE2
3 3 1002 Johnsen John 32 London 33333333

AND & OR Operators

The AND operator displays a record if both the first condition and the second condition is
true.

The OR operator displays a record if either the first condition or the second condition is true.

Examples:

select * from CUSTOMER where LastName='Smith' and FirstName='John'

Cuztorerld | CustomerMurnber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 - 1000 Srith Johin 12 Califarnia 11111111

select * from CUSTOMER where LastName='Smith' or FirstName='John'

Customerld CustomerMumber | LastMame | FistMame AreaCode | Addiezz | Phone

1T i1 1000 Smith John 12 California 11111111
2 3 1002 Jobrzen Jaohn 3z London 33333333

Structured Query Language (SQL)

44 SELECT

Combining AND & OR:

You can also combine AND and OR (use parenthesis to form complex expressions).

Example:

select * from CUSTOMER
where LastName='Smith' and (FirstName='John' or FirstName='Smith')

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 £ 1000 Smith John 12 California 11111111

SELECT TOP Clause

The TOP clause is used to specify the number of records to return.

The TOP clause can be very useful on large tables with thousands of records. Returning a
large number of records can impact on performance.

Syntax:

SELECT TOP number |percent column name (s)
FROM table name

Examples:

select TOP 1 * from CUSTOMER

Customerld CustomerMumber LastMame FustMame AreaCode Address Phone

1 i1 1000 St Jahn 12 California 11111111

...................................

You can also specify in percent:

select TOP 60 percent * from CUSTOMER

Cuztomerld | CustomerMumber | LastMame | FirstMame AreaCode Addiess | Phone
1 1 1000 Sriiith John 12 Calfarmia 111171111
2 2 10071 Jackzan Smith 45 London 22222222

This is very useful for large tables with thousands of records

Structured Query Language (SQL)

45 SELECT

Alias

You can give a table or a column another name by using an alias. This can be a good thing to
do if you have very long or complex table names or column names.

An alias name could be anything, but usually it is short.

SQL Alias Syntax for Tables:

SELECT column name (s)
FROM table name
AS alias name

SQL Alias Syntax for Columns:

SELECT column name AS alias name
FROM table name

Joins

SQL joins are used to query data from two or more tables, based on a relationship between
certain columns in these tables.

Structured Query Language (SQL)

46 SELECT

Get Data from multiple tables in a
single Query using Joins
Example: [
Column Name Data Type Allow Nulls
SCHOOL ¥ Courseld int
Column Name Data Type Allow Nulls CourseName varchar(30)
@ Schoolld int —— Schoolld i
SchoolName varchar(50) Description varchar(1000) v
Description varchar(1000) v
Address v
Phone varchar(50) v
PostCode varchar(50) v
PostAddress varchar(50) v
SeIeCt u?}(‘:‘hoolName Cc}fseName
SchoolName, l
CO u rse N a m e 3 Systems and Control Laboratory
from You link Primary Keys and Foreign Keys together
SCHOOL , 1 \
inner join COURSE on SCHOOL.Schoolld = COURSE.Schoolld

Different SQL JOINs

Before we continue with examples, we will list the types of JOIN you can use, and the
differences between them.

e JOIN: Return rows when there is at least one match in both tables

e LEFT JOIN: Return all rows from the left table, even if there are no matches in the
right table

e RIGHT JOIN: Return all rows from the right table, even if there are no matches in the
left table

e FULL JOIN: Return rows when there is a match in one of the tables

Example:
Given 2 tables:

e SCHOOL
e CLASS

Structured Query Language (SQL)

47 SELECT

The diagram is shown below:

CLASS
SCHOOL Calumn Mame Diata Type Al Mulls
Calumn Mame Diata Type Sllary Mulls 7 Classld int O
% schoolld int] mO———i Schoolld ink O
Schoollame varchar(50) E Classhame warchar(50) [l
Description varchar(1000) Description warchar{1000)
Address warchar(S0) [l
Fhone varchar(S0)
PostCode warchar(S0)
Postaddress varchar(S0)
O

We want to get the following information using a query:

SchoolName ClassName

In order to get information from more than one table we need to use the JOIN. The JOIN is
used to join the primary key in one table with the foreign key in another table.

select

SCHOOL.SchoolName,

CLASS.ClassName

from

SCHOOL

INNER JOIN CLASS ON SCHOOL.SchoolId = CLASS.SchoolId

SchoolMame | ClazsMame

1 ITlc | 5CET
> tuc SCE2
3 TUC PT1
4 TUC PT2
5 NTMU a1

B NTMU 2

Structured Query Language (SQL)

3SQL Scripts

A SQL script is a collection of SQL statements that you can execute in one operation. You can
use any kind of SQL commands, such as insert, select, delete, update, etc. In addition you
can define and use variables, and you may also use program flow like If-Else, etc. You may
also add comments to make the script easier to read and understand.

Using Comments

Using comments in you SQL script is important to make the script easier to read and
understand.

In SQL we can use 2 different kinds of comments:

e Single-line comment
e Multiple-line comment

Single-line comment

We can comment one line at the time using “--” before the text you want to comment out.

Syntax:

-—- text of comment

Multiple-line comment

We can comment several line using “/*” in the start of the comment and “*/” in the end of
the comment.

Syntax:

/*
text of comment
text of comment
*/

48

49 SQL Scripts

Variables

The ability to using variables in SQL is a powerful feature. You need to use the keyword
DECLARE when you want to define the variables. Local variables must have the the symbol
“@"” as a prefix. You also need to specify a data type for your variable (int, varchar(x), etc.).

Syntax for declaring variables:

declare @local variable data type

If you have more than one variable you want to declare:

declare
@myvariablel data type,
@myvariable2 data type,

When you want to assign values to the variable, you must use either a SET or a SELECT
statement.

Example:

declare @myvariable int

set (@Gmyvariable=4

If you want to see the value for a variable, you can e.g., use the PRINT command like this:

declare @myvariable int
set @myvariable=4

print (@myvariable

The following will be shown in SQL Server:

_'_i] bezsages
4

Assigning variables with a value from a SELECT statement is very useful.

Structured Query Language (SQL)

50 SQL Scripts

We use the CUSTOMER table as an example:

Custormerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 {1000 Smith John 12 California 11111111
2 2 1001 Jackzon Smith 45 Londaor)
3 3 1002 Johnzen Jahn 32 Landan 33333333

You can assign a value to the variable from a select statement like this:

declare @mylastname varchar (50)

select @mylastname=LastName from CUSTOMER where CustomerId=2
print @mylastname

'§'| Meszages

Jackson

You can also use a variable in the WHERE clause LIKE, e.g., this:

declare @find wvarchar (30)
set @find = 'J%'

select * from CUSTOMER
where LastName LIKE @find

Cuztomerld | CustomerMumber | LastMame | FistMame | AreaCode | Addriesz | Phone

1 2 £ 100 Jackson Smith 45 London 22222222

2 3 1002 Johnzen John 32 London 33333333

Built-in Global Variables

SQL have lots of built-in variables that are very useful to use in queries and scripts.

8.3.1 @@IDENTITY

After an INSERT, SELECT INTO, or bulk copy statement is completed, @ @IDENTITY contains
the last identity value that is generated by the statement. If the statement did not affect any
tables with identity columns, @ @IDENTITY returns NULL. If multiple rows are inserted,
generating multiple identity values, @ @IDENTITY returns the last identity value generated.

Example:

Given to tables; SCHOOL and COURSE:

Structured Query Language (SQL)

51 SQL Scripts

SCHOOL table: COURSE table:

Schoolld | SchoolMame | Description | Address | Phone | PostCode | Postiddress

Cowrseld CourseMame | Schoolld | Description

1 NULL NULL MULL NULL NULL 1| SCEDODE 1 MULL
2 NULL NULL NULL NULL UL s 5 Terptie NULL
3 3 SCE4206 1 NULL
4 4 SCE4106 1 NULL

We want to insert a new School into the SCHOOL table and we want to insert 2 new Courses

in the COURSE table that belong to the School we insert. To find the “Schoolld” we can use
the @ @IDENTITY variable:

declare @SchoolId int

—-— Insert Data into SCHOOL table
insert into SCHOOL (SchoolName) values ('MIT')

select @SchoollId = @QRIDENTITY

—— Insert Courses for the specific School above in the COURSE table
insert into COURSE (SchoolId,CourseName) values (@SchoolId, 'MIT-
101")

insert into COURSE (SchoolId,CourseName) values (@SchoolId, 'MIT-
201")

The result becomes:

SCHOOL table: COURSE table:

Schoolld | SchoolMame | Description | Addresz | Phone | PostCode | PostAddress
ETUE MHULL HULL MULL MULL MHULL

CourzeMame | Schoolld | Deszcription

. 1 SCE2008 1 MULL
2 2 MNTMLU HULL MLULL MULL MULL HULL 2 SCETI0E 1 MULL
3 16 MIT HULL MULL MWULL MULL HULL
3 3 SCE4206 1 MULL
4 4 SCE4106 1 HULL
5] MIT-101 16 MNULL
B G MIT-201 16 MULL

Flow Control

As with other programming languages you can use different kind of flow control, such as IF-
ELSE, WHILE, etc, which is very useful.

IF — ELSE

The IF-ELSE is very useful. Below we see an example:

declare @QcustomerNumber int

Structured Query Language (SQL)

52 SQL Scripts

select QcustomerNumber=CustomerNumber from CUSTOMER
where CustomerId=2

if @customerNumber > 1000

print 'The Customer Number is larger than 1000’
else

print 'The Customer Number is not larger than 1000'

_3 Messages
The Customer MNumher is larger thawn 1000

BEGIN...END:

If more than one line of code is to be executed within an IF sentence you need to use
BEGIN...END.

Example:

select @customerNumber=CustomerNumber from CUSTOMER where
CustomerId=2

if @customerNumber > 1000
begin
print 'The Customer Number is larger than 1000’
update CUSTOMER set AreaCode=46 where CustomerId=2
end
else
print 'The Customer Number is not larger than 1000’

WHILE

We can also use WHILE, which is known from other programming languages.
Example:

We are using the CUSTOMER table:

Customerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 E 1000 Srith Jahn 12 Califarnia 111711111
2 2 1001 Jackson Srith 45 Londan 2222
3 3 1002 Johnzen John 32 Londan 33333333

and the following query:

while (select AreaCode from CUSTOMER where CustomerId=1l) < 20
begin
update CUSTOMER set AreaCode = AreaCode + 1

Structured Query Language (SQL)

53 SQL Scripts

end

select * from CUSTOMER

Customnerld | CustomerMumber | LastMame | FirstMame

sgl_ode | Address Phone

1 i1 {1000 Smith John California 11111111
2 2 1001 Jackzon Smith Londaor)
3 3 1002 Johnzen Jahn 40 Landan 33333333

As you can see the code inside the WHILE loop is executed as long as “AreaCode” for
Customerld=1 is less than 20. For each iteration is the “AreaCode” for that customer
incremented with 1.

CASE

The CASE statement evaluates a list of conditions and returns one of multiple possible result
expressions.

Example:

We have a “GRADE” table that contains the grades for each student in different courses:

select GradelId, StudentId, Courseld, Grade from GRADE

Gradeld = Studentld | Courzeld = Grade
1 4

N f= L o —
Dl LD L —
M O

In the “GRADE” table is the grades stored as numbers, but since the students get grades with
the letters A..F (A=5, B=4, C=3, D=2, E=1, F=0), we want to convert the values in the table
into letters using a CASE statement:

select

Gradeld,

StudentId,

Courseld,

case Grade
when 5 then 'A’
when 4 then 'B'’
when 3 then 'C'
when 2 then 'D'
when 1 then 'E'
when 0 then 'F'
else '-'

end as Grade

from

Structured Query Language (SQL)

54 SQL Scripts

GRADE

Gradeld | Studentld | Courzeld = Grade

1 i1 1 1 B
. EEEEE 5 , .
3 3 3 3 F
4 4 4 3 C
]] 1 3 &

CURSOR

In advances scripts, CURSORs may be very useful. A CURSOR works like an advanced WHILE
loop which we use to iterate through the records in one or more tables.

CURSORS are used mainly in stored procedures, triggers, and SQL scripts.
Example:

We use the CUSTOMER table as an example:

Customerld | CustomerMumber | LastMame | Firsthame | AreaCode | Address |Phone
1 i1 - 1000 Smith John 20 Califorria | 11111111
2 2T 1001 Jacksan Smith 53 London | 2222
3 3 1002 Johnsen John 4n Laondon 33333333
4 B 1003 Obarna Barak. A1 Mevada | 4444

We will create a CURSOR that iterate through all the records in the CUSTOMER table and

check if the Phone number consists of 8 digits, if not the script will replace the invalid Phone
number with the text “Phone number is not valid”.

Here is the SQL Script using a CURSOR:

DECLARE
@CustomerId int,
@phone varchar (50)

DECLARE db cursor CURSOR
FOR SELECT CustomerId from CUSTOMER

OPEN db_cursor
FETCH NEXT FROM db cursor INTO @CustomerId

WHILE QRFETCH_STATUS = 0
BEGIN

select @phone=Phone from CUSTOMER where CustomerId=@CustomerId

if LEN (@phone) < 8

Structured Query Language (SQL)

55 SQL Scripts

update CUSTOMER set Phone='Phone number is not valid'
where CustomerId=@CustomerId

FETCH NEXT FROM db cursor INTO @CustomerId
END

CLOSE db cursor
DEALLOCATE db cursor

The CUSTOMER table becomes:

Cuztornerld | CustomerMurmber | LasztMare | Fisthame | AreaCode | Addresz |Phone
1 1 1000 Sith Jobn 20 California | 11111111
2 2 10 Jackszon Sriith 53 London Phone number iz not valid
3 3 100z Johnzen Jaohn 40 London 33333333
4 B 1003 Obama Barak.] | Mevada | Phone number iz not walid

Creating and using a CURSOR includes these steps:

e Declare SQL variables to contain the data returned by the cursor. Declare one
variable for each result set column.

e Associate a SQL cursor with a SELECT statement using the DECLARE CURSOR
statement. The DECLARE CURSOR statement also defines the characteristics of the
cursor, such as the cursor name and whether the cursor is read-only or forward-only.

e Use the OPEN statement to execute the SELECT statement and populate the cursor.

e Use the FETCH INTO statement to fetch individual rows and have the data for each
column moved into a specified variable. Other SQL statements can then reference
those variables to access the fetched data values.

e When you are finished with the cursor, use the CLOSE statement. Closing a cursor
frees some resources, such as the cursor's result set and its locks on the current row.
The DEALLOCATE statement completely frees all resources allocated to the cursor,
including the cursor name.

Structured Query Language (SQL)

9Views

Views are virtual table for easier access to data stored in multiple tables.

Create View:
IF EXISTS (SELECT name A View is a “virtual” table that
FROM sysobjects . .
TERE fae = teaurseDaEas can contain data from multiple
AND type = 'V') tables
DROP VIEW CourseData
GO .
// The Name of the View

CREATE VIEW CourseData

AS

BLECT IrT5|de the View you join the_

SCHOOL . SchoolTd, different tables together using

SCHOOL. SchoolName,
COURSE.CourselId,

COURSE .CourseName,
COURSE.Description

the JOIN operator

FROM
SCHOOL
INNER JOIN COURSE ON SCHOOL.SchoolId = COURSE.SchoolId
GO A

You can Use the View as an

Using the View: ordinary table in Queries :

select * from CourseData

Schoolld SchoolName Courseld CourseName Description
1 ?i § TUC 1 Industrial IT The best course ever
2 1 TUC 2 Control with Implementation Control Theory
3 1 TUC 3 Systems and Control Laboratory Practical Lav course

Syntax for creating a View:

CREATE VIEW <ViewName>
AS

... but it might be easier to do it in the graphical view designer that are built into SQL
Management Studio.

Syntax for using a View:

select * from <MyView> where

As shown above, we use a VIEW just like we use an ordinary table.

56

57 Views

Example:

We use the SCHOOL and CLASS tables as an example for our View. We want to create a View
that lists all the existing schools and the belonging classes.

CLASS
SCHOOL Calumn Mame Data Type Al Mulls
Calurnn Mame Diata Type &llawy Mulls 7 Classld int O
% schoalld int O O——«x Schoolld ink O
Schoollame varchar(50) . Classhame warchar(50) [
Description varchar(1000) Description warchar(1000}
Address varchar(S0) [
Fhone varchar(S0)
PostCode varchar(S0)
Postaddress varchar(S0)
O

We create the VIEW using the CREATE VIEW command:

CREATE VIEW SchoolView
AS

SELECT

SCHOOL.SchoolName,

CLASS.ClassName

FROM

SCHOOL

INNER JOIN CLASS ON SCHOOL.SchoolId = CLASS.SchoolId

Note! In order to get information from more than one table, we need to link the tables
together using a JOIN.

9.1 Using the Graphical Designer

We create the same View using the graphical designer in SQL Server Management Studio:

Structured Query Language (SQL)

58

Views

@

Add Table

Creating Views using the Editor

[Object Bplorer Y

Connect ~ 42 ¥J

TES

= [Databases
+ [System Databases
| J INVOICING
|J scADA
|J scHooL
[Database Diagrams

o8 ®

Description

Column Alias Table

» | Schooleme scHooL

) B3 Synony New View... |
| Progra
£ | Servicg
+ [Securit

® [J TEST

+ | Security

@ [Table: 1 \
= L3

®

+

= Filter »
+

Start PowerShell
Reports 4

+ [Replication Refresh

+
[Server Objects
+
+

[_J Management

@3

Tables | views | Functions | Synonyms
COURSE

GRADE

STUDENT

STUDENT_COURSE

TEACHER

TEACHER_COURSE

Add necessary tables

[refresh] [__add][cose |

ClassName CLASS

IEEEE

<

ISELECT dbo.SCHOOL.SchoolName, dbo.CLASS.ClassName
FROM dbo.SCHOOL INNER JOIN
dbo.CLASS ON dbo.SCHOOL. Schoolld = dbo.CLASS. Schoolld

Output | Sort Type

Select necessary
columns

Graphical Interface where you can select columns you need
<

Sort Order Filter Or...

The Code is automatically

¢ generated

or..

SchoolName: ClassName
» TUcC 3}
e . o Show the results
TucC PT1
1 o6 b b Celis Read Only.
B Choose Name
4

Enter a name for the view:
Schoolview|

OK Cancel

Save the View

Step 1: Right-click on the View node and select “New View...”:

Step

Object Explorer

Connect -

27 33

T 2] &

=8

= [Databases
[Swskern Dakabases
| INWOICING
|| SCADA
= | sCHOoOL
[Database Diagrams

[+ [Tables

[svnon | Mew Yiew, .,

|4 Progra

1 Service

[Securit

| J TEsST
[Security

[Server Objects
[Replication

| Management

2: Add necessary tables:

Filker
Skart PoverShell
Reporks

Refresh

Structured Query Language (SQL)

59

Views

Add Table

Tables |'v'iews Functions | Synonyms

COURSE
GRADE

STUDEMT
STUDENT _COURSE
TEACHER
TEACHER _COURSE

Refresh] [Add l [

Close

Step 3: Add Columns, etc.

Qr...

2 Select necessary
columns
Sork Order Filter Ot
4 The Code is automatically
generated

Show the results

ENEEASS
& SCHOOL [_|
* (il Columns)
* (Al Colurnns) [|ctassid
D Schoolld I:‘ Schoolld
Schoolianne
[|pescription Ciescrption
Q Address ﬂ
(_ |
Column flias Table Output | Sort Type
» SCHOOL
CLASS
=]
=
=1
b
SELECT dbo, SCHOOL, SchoolMame, dbo,CLASS. Classklame
FROM dbio, SCHOOL IMMER, JOTN
dbo.CLASS ON dbo, SCHOOL, Schoolld = dba.CLasS, Schoolld
SchoalMarne ClassMamne
4 TuC SCEL
TUZ SCEZ i
TUZ PT1
1 ofe | bk Cellis Read Only.

Or..

Step 4: Save the VIEW:

Choose Mame

Enter a name For the view:

X

|Su:h|:u:u|'-.-'iew|

[Ok H Cancel]

Structured Query Language (SQL)

60

Views

Step 5: Use the VIEW in a query:

select * from SchoolView

SchoolMame | ClazsM ame

1 TUC | SCE1
R — cces
3 TuC PT1
4 TUC PT2
5 NTNU &1

E MNTMU s2

Structured Query Language (SQL)

10 Stored Procedures

A Stored Procedure is a precompiled collection of SQL statements. In a stored procedure you
can use if sentence, declare variables, etc.

Create Stored Procedure:

IpiEtes (Elaar e , A Stored Procedure is like Method in C#
FROM sysobjects L. B)
WHERE name = 'StudentGrade' - itis a piece of code with SQL
AND type = 'P' Sds
DROP pROCEDURJ&udem’Gmde commands that do a specific task—and
06 you reuse it

CREATE PROCEDURE StudentGrade
@Student varchar(50),
@Course varchar(10), Procedure Name
@Grade varchar(1) \
Input Arguments

AS

DECLARE
@Studentld int, <€ Internal/Local Variables

@Courseid nt Note! Each variable starts with @

select Studentld from STUDENT where StudentName = @Student

select Courseld from COURSE where CourseName = @Course

SQL Code (the “body” of the

insert into GRADE (Studentld, Courseld, Grade) Stored Procedure)

values (@Studentld, @Courseld, @Grade)
GO

Using the Stored Procedure:
execute StudentGrade 'John Wayne', 'SCE2006', 'B'

Syntax for creating a Stored Procedure:

CREATE PROCEDURE <ProcedureName>
@<Parameterl> <datatype>

declare
@myVariable <datatype>
.. Create your Code here

Note! You need to use the symbol “@” before variable names.

Syntax for using a Stored Procedure:

EXECUTE <ProcedureName (...)>

Example:

61

62 Stored Procedures

We use the SCHOOL and CLASS tables as an example for our Stored Procedure. We want to
create a Stored Procedure that lists all the existing schools and the belonging classes.

CLASS
SCHOOL Column Mame Data Type Allow Nulls
Calumn Mame Data Type &l Mulls ¥ ClassId int L]
% schoalld int O mo——df| Sthoolld ink O
SchoolMame wvarchar(50) . ClassMame warchar(50) O
Description warchar?1000) Description warchar(1000}
Address warchar(50) O
Phone warchar(S0)
PostCode warchar(50)
Postiddress warchar(S0)
O

We create the Stored Procedure as follows:

CREATE PROCEDURE GetAllSchoolClasses
AS

select

SCHOOL.SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId
order by SchoolName, ClassName

When we have created the Stored Procedure we can run (or execute) the Stored procedure
using the execute command like this:

execute GetAllSchoolClasses

SchoolMame | ClazsMame

P A
A2
PT1
PT2
SCET
SCE2

Lm I 5 (R S T R o R

We can also create a Store Procedure with input parameters.

Example:

Structured Query Language (SQL)

63 Stored Procedures

We use the same tables in this example (SCHOOL and CLASS) but now we want to list all
classes for a specific school.

The Stored Procedure becomes:

CREATE PROCEDURE GetSpecificSchoolClasses
@SchoolName wvarchar (50)
AS

select

SCHOOL . SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId
where SchoolName=@SchoolName

order by ClassName

We run (or execute) the Stored Procedure:

execute GetSpecificSchoolClasses 'TUC'

Schooldame | ClazsMame

1 iTUC . PT1
2 TUC PT2
2 TUC SCE1
4 TUC SCE2

or:

execute GetSpecificSchoolClasses 'NTNU'

SchoolMame | ClazzMame

1 NTNU A

When we try to create a Stored Procedure that already exists we get the following error
message:

There is already an object named 'GetSpecificSchoolClasses' in the database.

Then we first need to delete (or DROP) the old Stored Procedure before we can recreate it
again.

We can do this manually in the Management Studio in SQL like this:

Structured Query Language (SQL)

64 Stored Procedures

=l [Programmability
= [Stored Procedures
4 [Swstem Stored Procedures
+ &) dbo.cetallschoolClasses
EREf dbo. GetSpecificSchoolClassee

+ [dbo.studentGrade Mews Stored Procedure.
+ | Functions Madify
[Database Triggers
¥ [3 Assemblies Execute Stored Procedure. ..
[Types Seripk Stared Procedurs as [
+ [Rules
[Defaulks Wiew Dependencies
Service Broke
e BNIE.B o Policies »
+ | Security
| J TEST Facets
Securiby
Server Objects Start Powershell
Replication Reports .
Managemenk

Rename

| Delete

A better solution is to add code for this in our script, like this:

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = GetSpecificSchoolClasses '
AND type = 'P')
DROP PROCEDURE GetSpecificSchoolClasses
GO

CREATE PROCEDURE GetSpecificSchoolClasses
@SchoolName wvarchar (50)
AS

select

SCHOOL.SchoolName,

CLASS.ClassName

from

SCHOOL

inner join CLASS on SCHOOL.SchoolId = CLASS.SchoolId
where SchoolName=@SchoolName

order by ClassName

So we use CREATE PROCEDURE to create a Stored Procedure and we use DROP PROCEDURE
to delete a Stored Procedure.

NOCOUNT ON/NOCOUNT OFF

In advanced Stored Procedures and Script, performance is very important. Using SET
NOCOUNT ON and SET NOCOUNT OFF makes the Stored Procedure run faster.

SET NOCOUNT ON stops the message that shows the count of the number of rows affected
by a Transact-SQL statement or stored procedure from being returned as part of the result
set.

Structured Query Language (SQL)

65 Stored Procedures

SET NOCOUNT ON prevents the sending of DONE_IN_PROC messages to the client for each
statement in a stored procedure. For stored procedures that contain several statements that
do not return much actual data, or for procedures that contain Transact-SQL loops, setting
SET NOCOUNT to ON can provide a significant performance boost, because network traffic is
greatly reduced.

Example:

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = 'sp LIMS IMPORT REAGENT'
AND type = 'P')
DROP PROCEDURE sp LIMS IMPORT REAGENT
GO

CREATE PROCEDURE sp LIMS IMPORT REAGENT
@Name wvarchar (100),

@LotNumber wvarchar (100),

@ProductNumber wvarchar (100),
@Manufacturer varchar (100)

AS
SET NOCOUNT ON

if not exists (SELECT ReagentId FROM LIMS REAGENTS WHERE
[Name] =@Name)
INSERT INTO LIMS REAGENTS ([Name], ProductNumber, Manufacturer)
VALUES (@Name, (@ProductNumber, @Manufacturer)
else
UPDATE LIMS REAGENTS SET
[Name] = @Name,
ProductNumber = @ProductNumber,
Manufacturer = @Manufacturer,
WHERE [Name] = @Name

SET NOCOUNT OFF
GO

This Stored Procedure updates a table in the database and in this case you don’t normally
need feedback, sp setting SET NOCOUNT ON at the top in the stored procedure is a good
idea. it is also good practice to SET NOCOUNT OFF at the bottom of the stored procedure.

Structured Query Language (SQL)

11 Functions

With SQL and SQL Server you can use lots of built-in functions or you may create your own
functions. Here we will learn to use some of the most used built-in functions and in addition
we will create our own function.

Built-in Functions

SQL has many built-in functions for performing calculations on data.

We have 2 categories of functions, namely aggregate functions and scalar functions.
Aggregate functions return a single value, calculated from values in a column, while scalar
functions return a single value, based on the input value.

Aggregate functions - examples:

e AVG() - Returns the average value

e STDEV() - Returns the standard deviation value
e COUNT() - Returns the number of rows

e MAX() - Returns the largest value

e MIN() - Returns the smallest value

e SUM() - Returns the sum

e etc.

Scalar functions - examples:

e UPPER() - Converts a field to upper case

e LOWER() - Converts a field to lower case

e LEN() - Returns the length of a text field

e ROUND() - Rounds a numeric field to the number of decimals specified
e GETDATE() - Returns the current system date and time

e etc.

String Functions

Here are some useful functions used to manipulate with strings in SQL Server:

66

67

Functions

CHAR
CHARINDEX
REPLACE
SUBSTRING
LEN
REVERSE
LEFT

RIGHT
LOWER
UPPER
LTRIM
RTRIM

Read more about these functions in the SQL Server Help.

Date and Time Functions

Here are some useful Date and Time functions in SQL Server:

DATEPART
GETDATE
DATEADD
DATEDIFF
DAY
MONTH
YEAR
ISDATE

Read more about these functions in the SQL Server Help.

Mathematics and Statistics Functions

Here are some useful functions for mathematics and statistics in SQL Server:

COUNT

MIN, MAX
COS, SIN, TAN
SQRT

STDEV

MEAN

AVG

Structured Query Language (SQL)

68 Functions

Read more about these functions in the SQL Server Help.

AVG()

The AVG() function returns the average value of a numeric column.

Syntax:

SELECT AVG (column name) FROM table name

Example:

Given a GRADE table:

Column Mame Daka Type Al Mulls
[iaradeld int O
StudentId ink]
Caurseld ink O
Grade Float]
Cornmenk warchari 1000)

We want to find the average grade for a specific student:

select AVG (Grade) as AvgGrade from GRADE where StudentId=1

Avglarade

................................

COUNT()

The COUNT() function returns the number of rows that matches a specified criteria.

The COUNT(column_name) function returns the number of values (NULL values will not be
counted) of the specified column:

SELECT COUNT (column name) FROM table name

The COUNT(*) function returns the number of records in a table:

SELECT COUNT (*) FROM table name

Structured Query Language (SQL)

69 Functions

We use the CUSTOMER table as an example:

Custormerld | CustomerMumber | LastMame | FirstMame | AreaCode | Address Phone

1 i1 {1000 Smith John 12 California 11111111
2 2 1001 Jackzon Smith 45 Londaor)
3 3 1002 Johnzen Jahn 32 Landan 33333333

select COUNT (*) as NumbersofCustomers from CUSTOMER

MumberafCustomers

1 3

The GROUP BY Statement

Aggregate functions often need an added GROUP BY statement.

The GROUP BY statement is used in conjunction with the aggregate functions to group the
result-set by one or more columns.

Syntax

SELECT column name, aggregate function (column name)
FROM table name

WHERE column name operator value

GROUP BY column name

Example:
We use the CUSTOMER table as an example:

Customnerld | Customerfumber | Laztblame | Firsttlame | AreaCode | Address Phone

1 Q0o Smith Jahn 12 Califaornia 11111111
2 2 1001 Jackson Smith 45 Londaon FEA2EL
3 3 1002 Johhzen John 32 Londaor 33333333

If we try the following:

select FirstName, MAX (AreaCode) from CUSTOMER

We get the following error message:

Column 'CUSTOMER.FirstName' is invalid in the select list because it is not contained in
either an aggregate function or the GROUP BY clause.

The solution is to use the GROUP BY:

select FirstName, MAX (AreaCode) from CUSTOMER
group by FirstName

Structured Query Language (SQL)

70

Functions

Firsttame | [Mo column name]

The HAVING Clause

The HAVING clause was added to SQL because the WHERE keyword could not be used with

aggregate functions.

Syntax:

SELECT column name, aggregate function (column name)
FROM table name

WHERE column name operator value
GROUP BY column name

HAVING aggregate function(column name) operator value

We use the GRADE table as an example:

select * from GRADE

Gradeld | Studentld = Courzeld @ Grade = Commett

1 i1 i1 1 4 MULL
- 5 1 - MULL
] 3 3 3 1] MULL
4 4 4 3 3 MULL
]] 1 3] MULL

First we use the GROUP BY statement:

select Courseld, AVG (Grade) from GRADE
group by Courseld

Courzeld | [Mo columi name)

1 i1 L 45

2 3 2.6EREEEEREEREET

While the following query:

select Courseld, AVG (Grade) from GRADE
group by CourselId
having AVG (Grade) >3

Courzeld | [Mo column name]

Structured Query Language (SQL)

71 Functions

User-defined Functions

IN SQL, we may also create our own functions, so-called user-defined functions.

A user-defined function is a routine that accepts parameters, performs an action, such as a
complex calculation, and returns the result of that action as a value. The return value can
either be a scalar (single) value or a table. Use this statement to create a reusable routine
that can be used in other queries.

In SQL databases, a user-defined function provides a mechanism for extending the
functionality of the database server by adding a function that can be evaluated in SQL
statements. The SQL standard distinguishes between scalar and table functions. A scalar
function returns only a single value (or NULL), whereas a table function returns a (relational)
table comprising zero or more rows, each row with one or more columns.

Stored Procedures vs. Functions:

e Only functions can return a value (using the RETURN keyword).

e Stored procedures can use RETURN keyword but without any value being passed[1]

e Functions could be used in SELECT statements, provided they don’t do any data
manipulation and also should not have any OUT or IN OUT parameters.

e Functions must return a value, but for stored procedures this is not compulsory.

e A function can have only IN parameters, while stored procedures may have OUT or IN
OUT parameters.

e A function is a subprogram written to perform certain computations and return a
single value.

e Astored procedure is a subprogram written to perform a set of actions, and can
return multiple values using the OUT parameter or return no value at all.

User-defined functions in SQL are declared using the CREATE FUNCTION statement.

When we have created the function, we can use the function the same way we use built-in
functions.

Structured Query Language (SQL)

12 Triggers

A database trigger is code that is automatically executed in response to certain events on a
particular table in a database.

A Trigger is executed when you insert, update or delete data in a Table specified in
the Trigger.

Create the Trigger:
IF EXISTS (SELECT name .
FROM sysobjects lnSIde the
WHERE name = 'CalcAvgGrade' Trigger you can
AND type = 'TR')

DROP TRIGGER CalgAvgGrade Name of the Trigger use ordinary SQL

= / statements,

CREATE TRIGGER CalcAvgGrade ON GRADE €— Specify which Table the create variables,
FOR UPDATE, INSERT, DELETE A
as < Trigger shall work on etc.
Specify what kind of operations the Trigger
DECLARE
@StudentId int, shall act on

@AvgGrade float €— 5
Internal/Local Variables

select @StudentId = StudentId from INSERTED

SQL Code
select QAvgGrade = AVG (Grade) om GRADE where StudentId = @StudentId (The ”body"
update STUDENT set Tot rade = @AvgGrade where StudentId = @StudentId of the Trigger)

GO

Note! “INSERTED” is a temporarily table containing the latest inserted data, and it is very
handy to use inside a trigger

Syntax for creating a Trigger:

CREATE TRIGGER <TriggerName> on <TableName>
FOR INSERT, UPDATE, DELETE

AS

. Create your Code here

GO

The Trigger will automatically be executed when data is inserted, updated or deleted in the
table as specified in the Trigger header.

INSERTED and DELETED:

Inside triggers we can use two special tables: the DELETED table and the INSERTED tables.
SQL Server automatically creates and manages these tables. You can use these temporary,

72

73 Triggers

memory-resident tables to test the effects of certain data modifications. You cannot modify
the data in these tables.

The DELETED table stores copies of the affected rows during DELETE and UPDATE
statements. During the execution of a DELETE or UPDATE statement, rows are deleted from
the trigger table and transferred to the DELETED table.

The INSERTED table stores copies of the affected rows during INSERT and UPDATE
statements. During an insert or update transaction, new rows are added to both the
INSERTED table and the trigger table. The rows in the INSERTED table are copies of the new
rows in the trigger table.

Example:
We will use the CUSTOMER table as an example:

Customnerld | Customerfumber Lastbame | Firsttame | AreaCode | Address Phone

1 i1 E 1000 Smith John 20 California 11111111
2 2 1001 Jackzan Smith 53 Landan 2ELDI22L
3 3 1002 Johnzen John a0 Londaon 33333333

We will create a TRIGGER that will check if the Phone number is valid when we insert or
update data in the CUSTOMER table. The validation check will be very simple, i.e., we will
check if the Phone number is less than 8 digits (which is normal length in Norway). If the
Phone number is less than 8 digits, the following message “Phone Number is not valid” be
written in place of the wrong number in the Phone column.

The TRIGGER becomes something like this:

IF EXISTS (SELECT name
FROM sysobjects
WHERE name = 'CheckPhoneNumber'
AND type = 'TR')
DROP TRIGGER CheckPhoneNumber
GO

CREATE TRIGGER CheckPhoneNumber ON CUSTOMER
FOR UPDATE, INSERT
AS

DECLARE

@QCustomerId int,
@Phone wvarchar (50),
@Message varchar (50)
set nocount on

select @CustomerId = CustomerId from INSERTED

select @Phone = Phone from INSERTED

Structured Query Language (SQL)

74 Triggers

set @Message = 'Phone Number ' + @Phone + ' is not valid'

if len (@Phone) < 8 —--Check if Phone Number have less than 8 digits

update CUSTOMER set Phone = (@Message where CustomerId =
@CustomerId

set nocount off

GO

We test the TRIGGER with the following INSERT INTO statement:

INSERT INTO CUSTOMER
(CustomerNumber, LastName, FirstName, AreaCode, Address, Phone)

VALUES
('1003', 'Obama', 'Barak', 51, 'Nevada', '4444")

The results become:

Customerld | CustomerMumber | LastMame | Firstlame | AreaCode Address | Phone

1 i 1000 Smith John 20 California 11111111
2 1 1001 Jackzon Srnith 53 Londaon 22222202
3 1002 Johnzen John an Londaon 23333333
4 1003 Obamna B arak. a1 Mevada Y Phone Humber 4444 is not v@

As you can see, the TRIGGER works as expected.

We try to update the Phone number to a valid number:

update CUSTOMER set Phone = '44444444' where CustomerNumber = '1003'

The results become:

Cuztomerld | CustomerMumber | LagtMame @ Fisthame | AreaCode | Address Phiohe

1 i1 {1000 Smith Jahn 20 Calfarnia 11111111
2 2 1001 Jackzon Smith A3 London 2EREIREY
3 3 1002 Johnhzen John a0 Landan 33 3
4 G

1003 Obama Barak, 51 Mevada (44444444

Structured Query Language (SQL)

13 Communication from
other Applications

A Database is a structured way to store lots of information. The information is stored in
different tables. “Everything” today is stored in databases.

Examples:

e Bank/Account systems
e Information in Web pages such as Facebook, Wikipedia, YouTube
e .. lots of other examples

This means we need to be able to communicate with the database from other applications
and programming languages in order to insert, update or retrieve data from the database.

ODBC

ODBC (Open Database Connectivity) is a standardized interface (API) for accessing the
database from a client. You can use this standard to communicate with databases from
different vendors, such as Oracle, SQL Server, etc. The designers of ODBC aimed to make it
independent of programming languages, database systems, and operating systems.

We will use the ODBC Data Source Administrator:

7' ODBC Data Source Administrator E]@

User D5H System DSN lFiIe DSN] Drivers} Tlac:ing] Connection Poohng] Ahout]

System Data Sources:

Narme | Driver Add...
Default_D atabase Mational Instruments Citadel 5 0

Labt/EW Micragoft Access Driver [*.mdb] Remaove
Test Micragoft Access Driver [*.mdb,

Hireme Sample Databaze 2008 Microsoft Access Driver [*.mdb!

An ODBC Systemn data source stores information about how to connect to
the indicated data provider. & System data source iz visible to all users
on this machine, including NT services.

1] Avbryt Hielp

75

76

Uses Data Sousces:

ODBC - Step by Step Instructions

7 0DBC Data Source Administrator (&3]

Name.

el Fies
MS Access Database.

An0DBC ink

and can only be used on the curient

the indicated data provider. A User data source is only visible to you.
machine.

SQL Server

Fulfo Aot |

Neste> |

‘Which SGL Server do you want to connectto? (5
> Server: [PCE8235\0EVELOPMENT] ~

The Name of your

Create New Data Source (%) [create a New Data Source to SQL Server %)
User DSN | System DSN | Fie DSN | Diivers | Tracing | Connection Pooling | About | 0DBC o
Select a diver for which you want to sel up a data source. = connecttoSQL § 0
1 o creesise=(QDBC Connection
O @ Name L\~ 3 Ry Whatname dojou wenl o uselaelerio 1 da souce
Moo Boss Dives] SRR Mictosoft ParadoxcTreber (.60] ¢ Bt 4
Microsof Excel Diver " is) Remove | Mictosoft Test Diiver (-t " csv) . e, Name: [TEST
r Microsoft Text-Treiber [".txt; *.csv) ¢ e 8
Configue. Microsoft Visual FoxPro Driver 1 iy How do you want to descibe the data source?
el FoxPro-Tieiber 1
adel 5 Database € Do

Hieh

Select the

Server,

AP
ey cick et Confuation
e

Q

¢ Connect 10 SQL Server to cbtain defaul setings ot the
.

crse Fao

Database you are
using for the
Library

¥ Change the defout databasets: (8
-

Ciert Configuration.

Use either
Windows or SQL
Server
authentication
(Windows is
simplest to use!)

T
=h g0l [Attach database flename:
et

¥ Use ANSI quoted idenkiiers.
¥ Use ANSI rus, paddings and waimings.
=

<Tioke [Newe> | Aot Hiep

i F

solt

L 008! [Perform anstaton for chasacter data

e

Pt

[~ Use regional settings when outputting curency, numbers, dates and
1g | lmes

I~ Save kong running queries to the log fle:

0DBC

configuaation:

[Microsoft SQL Server ODBC Diiver Version 03.85.1132

9

Fullor

< Tibake IData Source Name: TEST
scripbor:

ILog Diver Statistics: No
ecurty: No
Use Regenl Selings: No

[Use Faiover Server: No

[Use ANS| Quoted Ideniiiers: Yes

[Use ANSI Nul, Paddings and Waimings: Yes
No

Test your
connection to see
if its works

10

oK Cancel

Microsoft Excel

Microsoft Excel has the ability to retrieve data from different data sources, including

different database systems. It is very simple to retrieve data from SQL Server into Excel since

Excel and SQL Server has the same vendor (Microsoft).

Home Insert Page Layout Formulas Data Review View Developer Add
Cut -~ ~lli= i
=) % Calibri - ClA K= == S5 Wrap Text [
")‘ ; =3 Copy Y
aste v v|| < v Y =E=E = fcad M & v
5 # Format Painter B 7 U 2 v A === i3 Merge & Center
..... = t & =]
K21 - fe |
= G

V| A B C D E
Y studentid B studentName B3 studentNumber B Address B3 Phone B3

Wi N v b oweN

[
(=]

3 Barak Obama 33333333333
2 Jens Stoltenberg 22222222222
1 John Cleese 111111117111
4 Kurt Nilsen QAAAAAAANNA

White House 12 45667722

Pilstredet 45 66778899
Pilstredet12 12345678
KarlJohan 34 44332277,

Structured Query Language (SQL)

77

M f E I Select your ODBC connection
icrosoft Exce i C——
£ F B B = . e
@™ oot 1 e o | T i] -
[o ey e Mo s M i\
S LAPR AN j :"’ =
el T i)
[
Choose Data Source
: A X t M Databases | Quaries | OLAP Cubes |
2 <New Data Source>
3 |AccessTest™
| dBASE Files*
S Defau_Database”
5 Exctlncf'
:‘ MS Access Database™
8 Xieme Sample Database 2008*
s
10 B Usethe Query Weadto create/ed queries
1 13
= R
Home Insert Page Layout Formulas Home Insert Page Layout Formulas Data Review View veloper Adq
g 3 3 2] Connections S y == ==
= Em B Ly 2] t PRl ¢ ; 522 & Cut Calibri Ju c) A Al = = =l | Siwrep Text
= =
Fran P En T Ea Prom ore e | e 2 oson | e P et B3 Copy
Rccgae Webl et B sourees =l Conneciars || A Ay o [— i i
| 1 I) — Paste ¢ Format painter ||| B £ U - E ||~ A ||| B 2 3W|[3F 27| o Merge & Center
(R & | Gl
‘& Select Tables'and Columns — a1 - r
2 Query Wizard - Choose Columns F Gl
3
: What coans o dokadoyou war 1 ke o uey? 1 mmn
s Svadeble et ard cob s Brol 5 3 Barak Obama 33333333333 Whlte House 12 45667722
3 a >
= Classld StudertName 3 2 Jens Stoltenberg 22222222222 Pilstredet 45 66778899
== E
Z B STUOCHL cOUe S . . 11111112111 Pilstredet12 12345678
8 # symmetiic_keys < | [Prone - e vsiede
B @ Mmm : - Query Wizard - Finish Karl Johan 34 44332277,
a0 < > What would you ke to do next?
= Preview of deta in selected cokumn:
12 & Retum Data to Microsoft Dffice Excel Save Query.
ﬁ " View data or edit query in Microsoft Query
= o | _optns.. | 0
= .
1 Finally, the data from the
1 .
database is in the Excel
sheet
@I < Tibake | Fulfar | Avbigt y

Structured Query Language (SQL)

14 References

My Blog: https://www.halvorsen.blog

Microsoft official SQL Server Web site - http://www.microsoft.com/sglserver

SQL Server Books Online - http://msdn.microsoft.com/en-us/library/ms166020.aspx

SQL Server Help

w3shools.com - http://www.w3schools.com/sdl

Wikipedia — Microsoft SQL Server - http://en.wikipedia.org/wiki/Microsoft SQL Server

Wikipedia - SQL - http://en.wikipedia.org/wiki/SQL

Wikipedia — Transact SQL - http://en.wikipedia.org/wiki/T-SQL

http://www.halvorsen.blog/
http://www.microsoft.com/sqlserver
http://msdn.microsoft.com/en-us/library/ms166020.aspx
http://www.w3schools.com/sql
http://en.wikipedia.org/wiki/Microsoft_SQL_Server
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/T-SQL

	Structured Query Language
	Table of Contents
	1 Introduction to SQL
	Data Definition Language (DDL)
	Data Manipulation Language (DML)

	2 Introduction to SQL Server
	SQL Server Management Studio
	Create a new Database
	Queries

	3 CREATE TABLE
	Example:
	Best practice:
	Database Modelling
	Create Tables using the Designer Tools
	SQL Constraints
	PRIMARY KEY
	Setting Primary Keys in the Designer Tools:

	FOREIGN KEY
	Setting Foreign Keys in the Designer Tools:

	NOT NULL / Required Columns
	Setting NULL/NOT NULL in the Designer Tools:

	UNIQUE
	Setting UNIQUE in the Designer Tools:

	CHECK
	Setting CHECK constraints in the Designer Tools:

	DEFAULT
	Setting DEFAULT values in the Designer Tools:

	AUTO INCREMENT or IDENTITY
	Setting identity(1,1) in the Designer Tools:

	ALTER TABLE

	4 INSERT INTO
	Insert Data Only in Specified Columns:
	Insert Data in the Designer Tools:

	5 UPDATE
	Update Data in the Designer Tools:

	6 DELETE
	Delete All Rows:
	Delete Data in the Designer Tools:

	7 SELECT
	Select Data in the Designer Tools:
	The ORDER BY Keyword
	SELECT DISTINCT
	The WHERE Clause
	Operators
	LIKE Operator
	IN Operator
	BETWEEN Operator

	Wildcards
	AND & OR Operators
	Combining AND & OR:

	SELECT TOP Clause
	Alias
	SQL Alias Syntax for Tables:

	Joins
	Different SQL JOINs

	8 SQL Scripts
	Using Comments
	Single-line comment
	Multiple-line comment

	Variables
	Built-in Global Variables
	8.3.1 @@IDENTITY
	Example:

	Flow Control
	IF – ELSE
	BEGIN…END:

	WHILE
	Example:

	CASE
	CURSOR
	Example:

	9 Views
	Example:
	9.1 Using the Graphical Designer

	10 Stored Procedures
	Example:
	Example: (1)
	NOCOUNT ON/NOCOUNT OFF
	Example:

	11 Functions
	Built-in Functions
	String Functions
	Date and Time Functions
	Mathematics and Statistics Functions
	AVG()
	COUNT()
	The GROUP BY Statement
	The HAVING Clause

	User-defined Functions

	12 Triggers
	INSERTED and DELETED:
	Example:

	13 Communication from other Applications
	ODBC
	Microsoft Excel

	14 References

