JAVA 8
LeetCode Solutions

Contents

10

11

12

13

14

15

16

17

18

19

20

Rotate Array in Java

Evaluate Reverse Polish Notation
Solution of Longest Palindromic Substring in Java
Solution Word Break

Word Break Il

Word Ladder

Median of Two Sorted Arrays Java
Regular Expression Matching in Java
Merge Intervals

Insert Interval

Two Sum

Two Sum Il Input array is sorted
Two Sum Il Data structure design
3Sum

4Sum

3Sum Closest

String to Integer (atoi)

Merge Sorted Array

Valid Parentheses

Implement strStr()

2] 181

Contents

11

15

18

20

23

25

27

29

31

32

33

34

36

38

39

40

42

43

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Set Matrix Zeroes

Search Insert Position

Longest Consecutive Sequence Java

Valid Palindrome

Spiral Matrix

Search a 2D Matrix

Rotate Image

Triangle

Distinct Subsequences Total

Maximum Subarray

Maximum Product Subarray

Remove Duplicates from Sorted Array
Remove Duplicates from Sorted Array Il
Longest Substring Without Repeating Characters
Longest Substring Which Contains 2 Unique Characters
Palindrome Partitioning

Reverse Words in a String

Find Minimum in Rotated Sorted Array
Find Minimum in Rotated Sorted Array Il
Find Peak Element

Min Stack

Majority Element

Combination Sum

Best Time to Buy and Sell Stock

Best Time to Buy and Sell Stock Il
Contents

Program Creek

44
46
47
49
52
55
56
58
60
62
63
64
67
69
71
73
75
76
77
78
79
80
82
83

84

31181

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Best Time to Buy and Sell Stock llI
Best Time to Buy and Sell Stock IV
Longest Common Prefix

Largest Number

Combinations

Compare Version Numbers

Gas Station

Candy

Jump Game

Pascal’s Triangle

Container With Most Water
Count and Say

Repeated DNA Sequences

Add Two Numbers

Reorder List

Linked List Cycle

Copy List with Random Pointer
Merge Two Sorted Lists

Merge k Sorted Lists

Remove Duplicates from Sorted List
Partition List

LRU Cache

Intersection of Two Linked Lists
Java PriorityQueue Class Example

Solution for Binary Tree Preorder Traversal in Java
Contents

4] 181

85

86

88

89

90

92

93

95

96

97

98

99

100

101

105

109

111

114

116

117

119

121

124

125

127

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Solution of Binary Tree Inorder Traversal in Java

Solution of Iterative Binary Tree Postorder Traversal in Java

Validate Binary Search Tree
Flatten Binary Tree to Linked List

Path Sum

Construct Binary Tree from Inorder and Postorder Traversal

Convert Sorted Array to Binary Search Tree
Convert Sorted List to Binary Search Tree
Minimum Depth of Binary Tree

Binary Tree Maximum Path Sum

Balanced Binary Tree

Symmetric Tree

Clone Graph Java

How Developers Sort in Java?

Solution Merge Sort LinkedList in Java
Quicksort Array in Java

Solution Sort a linked list using insertion sort in Java
Maximum Gap

Iteration vs. Recursion in Java

Edit Distance in Java

Single Number

Single Number II

Twitter Codility Problem Max Binary Gap
Number of 1 Bits

Reverse Bits
Contents

Program Creek

128
130
131
133
134
136
137
138
140
142
143
145
146
149
151
154
156
158
160
163
165
166
166
167

168

5] 181

96

97

98

929

Permutations
Permutations Il
Permutation Sequence

Generate Parentheses

100 Reverse Integer

101 Palindrome Number

102 Pow(X, n)

6| 181

169

171

173

175

176

178

179

1 Rotate Array in Java

You may have been using Java for a while. Do you think a simple Java array question
can be a challenge? Let’s use the following problem to test.

Problem: Rotate an array of n elements to the right by k steps. For example, with n
=7 and k = 3, the array [1,2,3,4,5,6,7] is rotated to [5,6,7,1,2,3,4].

How many different ways do you know to solve this problem?

Solution 1 - Intermediate Array

In a straightforward way, we can create a new array and then copy elements to the
new array. Then change the original array by using System.arraycopy().

public void rotate(int[] nums, int k) {
if(k > nums.length)
k=k%nums.length;

int[] result = new int[nums.length];

for(int 1=0; i < k; 1i++){

result[i] nums [nums . length-k+i];

int §=0;

for (int i=k; i<nums.length; i++) {
result[i] = nums[]j];
J++;

System.arraycopy(result, 0, nums, 0O, nums.length);

Space is O(n) and time is O(n).

Solution 2 - Bubble Rotate

Can we do this in O(1) space?
This solution is like a bubble sort.

public static void rotate(int[] arr, int order) {
if (arr == null || order < 0) {

throw new IllegalArgumentException("Illegal argument!");

7181

1 Rotate Array in Java

for (int i = 0; i < order; i++) {
for (int j = arr.length - 1; j > 0; j--) {
int temp = arr([j];
arr[j] = arr([j - 117
arr[j - 1] = temp;

However, the time is O(n*k).

Solution 3 - Reversal

Can we do this in O(1) space and in O(n) time? The following solution does.
Assuming we are given 1,2,3,4,5,6 and order 2. The basic idea is:

Divide the array two parts: 1,2,3,4 and 5, 6
Rotate first part: 4,3,2,1,5,6
Rotate second part: 4,3,2,1,6,5

Sw N

Rotate the whole array: 5,6,1,2,3,4

public static void rotate(int[] arr, int order) {

order = order % arr.length;

if (arr == null || order < 0) {

throw new IllegalArgumentException ("Illegal argument!") ;

//length of first part

int a = arr.length - order;

reverse (arr, 0, a-1);
reverse (arr, a, arr.length-1);

reverse (arr, 0, arr.length-1);

public static void reverse(int[] arr, int left, int right) {
if (arr == null || arr.length == 1)
return;

while (left < right) {
int temp = arr([left];

arr[left] = arr[right];
arr[right] = temp;
left++;

right--;

8] 181 Program Creek

2 Evaluate Reverse Polish Notation

The problem:

Evaluate the value of an arithmetic expression in Reverse Polish Notation.

Valid operators are +, -, %, /. Each operand may be an integer or another

expression.

Some examples:
["2v, "im, wgnw owm3n o owuw] _s (2 4 1) « 3) -> 9
[r4m, "13m, 5w, ow/w_owiw] -5 (4 4+ (13 / 5)) -> 6

Naive Approach

This problem is simple. After understanding the problem, we should quickly realize
that this problem can be solved by using a stack. We can loop through each element
in the given array. When it is a number, push it to the stack. When it is an operator,
pop two numbers from the stack, do the calculation, and push back the result.

+

=5

| -
-

2o s A

The following is the code. It runs great by feeding a small test. However, this code

9| 181

2 Evaluate Reverse Polish Notation

contains compilation errors in leetcode. Why?

public class Test {

public static void main(String[] args) throws IOException {
String[] tokens = new Stringfl] { "2", "1", "4", "3", "x" };
System.out.println (evalRPN (tokens)) ;

public static int evalRPN (String[] tokens) {
int returnValue = 0;

String operators = "+-x/";
Stack<String> stack = new Stack<String>():;

for (String t : tokens) {
if (!operators.contains(t)) {
stack.push(t);
} else {
int a = Integer.valueOf (stack.pop());
int b = Integer.valueOf (stack.pop());
switch (t) {
case "+":
stack.push (String.valueOf (a + b)) ;
break;
case "-":
stack.push (String.valueOf (b - a));
break;
case "x":
stack.push (String.valueOf (a * b)) ;
break;
case "/":
stack.push (String.valueOf (b / a));

break;

returnValue = Integer.valueOf (stack.pop()):;

return returnValue;

The problem is that switch string statement is only available from JDK 1.7. Leetcode
apparently use versions below that.

10 | Program Creek

Accepted Solution

If you want to use switch statement, you can convert the above by using the following
code which use the index of a string "+-*/".

public class Solution {
public int evalRPN(String[] tokens) {

int returnValue = 0;

String operators = "+-x/";

Stack<String> stack = new Stack<String>():;

for(String t : tokens) {
if (!operators.contains(t)) {
stack.push(t);
lelse{
int a = Integer.valueOf (stack.pop());
int b = Integer.valueOf (stack.pop());
int index = operators.indexOf (t);
switch (index) {
case O:
stack.push (String.valueOf (a+tb)) ;
break;
case 1:
stack.push (String.valueOf (b-a));
break;
case 2:
stack.push (String.valueOf (axb)) ;
break;
case 3:
stack.push (String.valueOf (b/a)) ;

break;

returnValue = Integer.valueOf (stack.pop());

return returnValue;

11] 181

3 Solution of Longest Palindromic Substring in Java

3 Solution of Longest Palindromic
Substring in Java

Finding the longest palindromic substring is a classic problem of coding interview. In
this post, I will summarize 3 different solutions for this problem.

Naive Approach

Naively, we can simply examine every substring and check if it is palindromic. The
time complexity is O(n3). If this is submitted to LeetCode onlinejudge, an error mes-
sage will be returned - "Time Limit Exceeded". Therefore, this approach is just a start,
we need a better algorithm.

public static String longestPalindromel (String s) {

int maxPalinLength = 0;
String longestPalindrome = null;

int length = s.length():;

// check all possible sub strings
for (int 1 = 0; i < length; i++) {
for (int j =i + 1; j < length; Jj++) {

int len = j - i;
String curr = s.substring(i, j + 1);
if (isPalindrome (curr)) {

if (len > maxPalinLength) {
longestPalindrome = curr;

maxPalinLength = len;

return longestPalindrome;

public static boolean isPalindrome (String s) {
for (int 1 = 0; i < s.length() - 1; i++) {

if (s.charAt (i) != s.charAt(s.length() - 1 - 1)) {

return false;

return true;

12 | Program Creek

3 Solution of Longest Palindromic Substring in Java

Dynamic Programming

Let s be the input string, i and j are two indices of the string.

Define a 2-dimension array "table" and let table[i][j] denote whether substring from
i toj is palindrome.

Start condition:

table[i] [1] == 1;
table[i] [1+1] == 1 => s.charAt (i) == s.charAt (i+l)

Changing condition:

table[i+1][j-1] == 1 && s.charAt (i) == s.charAt(j)
=>
table[i] [j] == 1

Time O(n2) Space O(n2)

public static String longestPalindrome2 (String s) {
if (s == null)

return null;

if(s.length() <=1)

return s;

int maxLen = 0;
String longestStr = null;

int length = s.length();
int[][] table = new int[length] [length];

//every single letter is palindrome

for (int i = 0; i < length; i++) {
table[1] [1] = 1;

}

printTable (table) ;

//e.g. bcba
//two consecutive same letters are palindrome
for (int 14 = 0; i <= length - 2; i++) {
if (s.charAt (i) == s.charAt(i + 1)) {
table[i] [1i + 1] = 1;
longestStr = s.substring (i, i + 2);

}
printTable (table) ;
//condition for calculate whole table
for (int 1 = 3; 1 <= length; 1++) {
for (int i = 0; i1 <= length-1; i++) {

Program Creek 13]181

3 Solution of Longest Palindromic Substring in Java

int j =1 + 1 - 1;

if (s.charAt (i) == s.charAt(j)) {
table[i] [jJ] = table[i + 1][j - 11;
if (table[i][j] == 1 && 1 > maxLen)
longestStr = s.substring(i, j + 1);
} else {
table[i] [j] = 0;

}
printTable (table) ;

return longestStr;
}
public static void printTable (int[][] x) {
for(int [] y : x){
for(int z: y){
System.out.print(z + " ");
}
System.out.println () ;
}
System.out.println (" ----------- ")

Given an input, we can use printTable method to examine the table after each itera-
tion. For example, if input string is "dabcba”, the final matrix would be the following:

o o O o o
o o o o+ O
o o O+ O O
o O B O O O
o B O O O
= O O O +r O

From the table, we can clear see that the longest string is in cell table[1][5].

Simple Algorithm

From Yifan’s comment below.
Time O(n2), Space O(1)

public String longestPalindrome (String s) {
if (s.isEmpty()) {

return null;

if (s.length() == 1) {

return s;

14] 181 Program Creek

String longest = s.substring (0, 1);
for (int 1 = 0; i < s.length(); i++) {
// get longest palindrome with center of i
String tmp = helper(s, i, 1i):
if (tmp.length () > longest.length()) {
longest = tmp;

// get longest palindrome with center of i, i+1
tmp = helper(s, i, i + 1);
if (tmp.length () > longest.length()) {

longest = tmp;

return longest;

// Given a center, either one letter or two letter,
// Find longest palindrome
public String helper (String s, int begin, int end) {

while (begin >= 0 && end <= s.length() - 1 && s.charAt (begin) ==
s.charAt (end)) {
begin--;
end++;

}

return s.substring(begin + 1, end);

Manacher’s Algorithm

Manacher’s algorithm is much more complicated to figure out, even though it will
bring benefit of time complexity of O(n).
Since it is not typical, there is no need to waste time on that.

4 Solution Word Break

Given a string s and a dictionary of words dict, determine if s can be segmented into
a space-separated sequence of one or more dictionary words. For example, given s =
"leetcode”, dict = ["leet”, "code"]. Return true because "leetcode” can be segmented as
"leet code”.

15| 181

4 Solution Word Break

Naive Approach

This problem can be solve by using a naive approach, which is trivial. A discussion
can always start from that though.

public class Solution ({
public boolean wordBreak (String s, Set<String> dict) {

return wordBreakHelper (s, dict, 0);

public boolean wordBreakHelper (String s, Set<String> dict, int start) {

if (start == s.length())

return true;

for (String a: dict) {
int len = a.length();

int end = start+len;

//end index should be <= string length
if (end > s.length())

continue;

if (s.substring(start, start+len).equals(a))
if (wordBreakHelper (s, dict, start+len))

return true;

return false;

Time: O(n2)
This solution exceeds the time limit.

Dynamic Programming

The key to solve this problem by using dynamic programming approach:

e Define an array t[] such that t[i]==true =>0-(i-1) can be segmented using dictio-
nary

e Initial state t[0] == true

public class Solution {
public boolean wordBreak (String s, Set<String> dict) {

boolean[] t = new boolean[s.length()+1];
t[0] = true; //set first to be true, why?

//Because we need initial state

for (int 1=0; i<s.length(); i++) {

16 | 181 Program Creek

//should continue from match position
1if('t[il)

continue;

for (String a: dict) {

a.length();

int len

int end

if (end > s.length())

i + len;
continue;
if(t[end])

continue;

if (s.substring (i,
t [end]

end) .equals (a)) {

true;

return t[s.length()];

4 Solution Word Break

Time: O(string length * dict size)
One tricky part of this solution is the case:

INPUT: '"programcreek", ["programcree", "program", "creek"].

We should get all possible matches, not stop at "programcree”.

Regular Expression

The problem is supposed to be equivalent to matching the regexp (leet|code)*, which

means that it can be solved by building a DFA in O(2m) and
(Thanks to hdante.) Leetcode online judge does not allow using

executing it in O(n).
Pattern class though.

public static void main(String[] args)

{
new HashSet<String> () ;

HashSet<String> dict

dict.add ("go") ;
dict.add ("goal");
dict.add ("goals");
dict.add("special");

StringBuilder sb new StringBuilder () ;

for(String s: dict) {

sb.append(s + "|");

String pattern sb.toString () .substring (0, sb.length()-1

Program Creek

) ;

17] 181

pattern = " ("+pattern+") «";
Pattern p = Pattern.compile (pattern) ;
Matcher m = p.matcher ("goalspecial") ;
if (m.matches ()) {

System.out.println ("match");

The More Interesting Problem

The dynamic solution can tell us whether the string can be broken to words, but can
not tell us what words the string is broken to. So how to get those words?

Check out Word Break II.

5 Word Break Il

Given a string s and a dictionary of words dict, add spaces in s to construct a sentence
where each word is a valid dictionary word. Return all such possible sentences.

For example, given s = "catsanddog", dict = ["cat", "cats", "and", "sand", "dog"], the

solution is ["cats and dog", "cat sand dog"].

Java Solution - Dynamic Programming

This problem is very similar to Word Break. Instead of using a boolean array to track
the match positions, we need to track the actual words. Then we can use depth first
search to get all the possible paths, i.e., the list of strings.

The following diagram shows the structure of the tracking array.

18] 181

Index Words

c 0
a 1
t 2
S 3 cat
a - ‘cats
n 5 .
d 6
d | 7 |and,sand
o 8 '
g 9
10 'dog

5 Word Break Il

public static List<String> wordBreak (String s, Set<String> dict)

//create an array of ArrayList<String>
List<String> dpl[] = new ArraylList[s.length()+11];
dpl[0] = new ArrayList<String>();

for (int i=0; i<s.length(); i++) {
if(dpl[i] == null)

continue;

for (String word:dict) {
int len = word.length() ;
int end = it+len;
if (end > s.length())

continue;

if(s.substring (i, end) .equals (word)) {
if (dpl[end] == null) {
dplend] = new ArrayList<String>();
}
dp[end] .add (word) ;

List<String> result = new LinkedList<String> ()
if(dpls.length ()] == null)

return result;

Program Creek

19 | 181

ArrayList<String> temp = new ArrayList<String> () ;
dfs (dp, s.length(), result, temp):;

return result;

public static void dfs(List<String> dp[],int end,List<String> result,
ArraylList<String> tmp) {
if (end <= 0) {
String path = tmp.get (tmp.size()-1);
for (int i=tmp.size()-2; i>=0; i--) {

path += " " + tmp.get (i) ;

result.add(path);

return;

for (String str : dplend]) {
tmp.add (str) ;
dfs (dp, end-str.length(), result, tmp):;

tmp.remove (tmp.size()-1) ;

6 Word Ladder

The problem:

Given two words (start and end), and a dictionary, find the length of shortest trans-
formation sequence from start to end, such that:

Only one letter can be changed at a time Each intermediate word must exist in the
dictionary For example,

Given:
start = "hit"
end = "cog"
dict = ["hOt", "dOt", "dOg" , "lot" , "lOg"J

As one shortest transformation is "hit" ->"hot" ->"dot" ->"dog" ->"cog", the program
should return its length 5.

Note: Return O if there is no such transformation sequence. All words have the same
length. All words contain only lowercase alphabetic characters.

This problem is a classic problem that has been asked frequently during interviews.

20 | 181

6 Word Ladder

The following are two Java solutions.

Naive Approach

In a simplest way, we can start from start word, change one character each time, if it
is in the dictionary, we continue with the replaced word, until start == end.

public class Solution ({
public int ladderlLength(String start, String end, HashSet<String> dict) {

int len=0;
HashSet<String> visited = new HashSet<String>():;

for (int i=0; i<start.length(); i++) {
char[] startArr = start.toCharArray();

for (char c="a’; c<="z'"; c++){
if (c==start.toCharArray() [1]) {

continue;

startArr[i] = c;
String temp = new String(startArr);
if (dict.contains (temp)) {

len++;

start = temp;

if (temp.equals (end)) {

return len;

return len;

Apparently, this is not good enough. The following example exactly shows the
problem. It can not find optimal path. The output is 3, but it actually only takes 2.

Input: llall, "C", ["all,"b",HCH]
Output: 3
Expected: 2

Breath First Search

So we quickly realize that this looks like a tree searching problem for which breath
first guarantees the optimal solution.

Program Creek 211181

6 Word Ladder

Assuming we have some words in the dictionary, and the start is "hit" as shown in
the diagram below.

start = "hit"

(Crer)

We can use two queues to traverse the tree, one stores the nodes, the other stores the
step numbers.
Updated on 2/27/2015.

public int ladderLength (String start, String end, HashSet<String> dict) {
if (dict.size () == 0)

return 0;
dict.add (end) ;

LinkedList<String> wordQueue = new LinkedList<String> () ;

LinkedList<Integer> distanceQueue = new LinkedList<Integer> () ;

wordQueue.add (start) ;

distanceQueue.add (1) ;

//track the shortest path

int result = Integer.MAX_VALUE;

while (!wordQueue.isEmpty()) {
String currWord = wordQueue.pop () ;

Integer currDistance = distanceQueue.pop() ;
if (currWord.equals (end)) {

result = Math.min (result, currDistance) ;

for (int 1 = 0; i < currWord.length(); i++) {
char[] currCharArr = currWord.toCharArray() ;

for (char ¢ = ’"a’; c <= "z"; c++) {

22181 Program Creek

currCharArr[i] = c;

String newWord = new String(currCharArr);

if (dict.contains (newWord)) {
wordQueue.add (newWord) ;
distanceQueue.add (currDistance + 1);

dict.remove (newWord) ;

if (result < Integer.MAX_VALUE)
return result;
else

return 0;

What learned from this problem?

e Use breath-first or depth-first search to solve problems

e Use two queues, one for words and another for counting

7 Median of Two Sorted Arrays Java

LeetCode Problem:
There are two sorted arrays A and B of size m and n respectively. Find the median of the
two sorted arrays. The overall run time complexity should be O(log (m+n)).

Java Solution

This problem can be converted to the problem of finding kth element, k is (A’s length
+ B’ Length) /2.

If any of the two arrays is empty, then the kth element is the non-empty array’s kth
element. If k == 0, the kth element is the first element of A or B.

For normal cases(all other cases), we need to move the pointer at the pace of half of

an array length.

public static double findMedianSortedArrays (int A[], int B[]) {
int m = A.length;
int n = B.length;

23] 181

if ((m + n) % 2 !'=0) // odd
return (double) findKth(A, B, (m + n) / 2, 0, m - 1, 0, n - 1);
else { // even
return (findKth(A, B, (m + n) / 2, 0, m - 1, 0, n - 1)
+ findKth@A, B, (m +n) /2 -1, 0, m -1, 0, n - 1)) * 0.5;

public static int findKth (int A[], int B[], int k,
int aStart, int akEnd, int bStart, int bEnd) {

int alLen

int bLen

akEnd - aStart + 1;
bEnd bStart + 1;

// Handle special cases
if (alen == 0)
return B[bStart + k];
if (bLen == 0)
return A[aStart + k];
if (k == 0)
return AlaStart] < B[bStart] ? Al[aStart] : B[bStart];

int aMid = alen * k / (alen + blen); // a’s middle count
int bMid = k - aMid - 1; // b’s middle count

// make aMid and bMid to be array index
aMid = aMid + aStart;
bMid = bMid + bStart;

if (A[aMid] > B[bMid]) {
k = k - (bMid - bStart + 1);
aEnd = aMid;
bStart = bMid + 1;

} else {
k = k - (aMid - aStart + 1);
bEnd = bMid;
aStart = aMid + 1;

return findKth (A, B, k, aStart, akEnd, bStart, bEnd);

The Steps of the Algorithm

Thanks to Gunner86. The description of the algorithm is awesome!
1) Calculate the medians m1 and m2 of the input arrays arl[] and ar2[] respectively.
2) If m1 and m2 both are equal then we are done, and return ml (or m2) 3) If ml

24| 181

8 Regular Expression Matching in Java

is greater than m2, then median is present in one of the below two subarrays. a)
From first element of arl to ml (arl[0..|_.n/2_|]) b) From m2 to last element of ar2
(ar2[|_n/2_|..n-1]) 4) If m2 is greater than ml, then median is present in one of the
below two subarrays. a) From ml to last element of arl (arl[|_n/2_|..n-1]) b) From
first element of ar2 to m2 (ar2[0..|_n/2_|]) 5) Repeat the above process until size of
both the subarrays becomes 2. 6) If size of the two arrays is 2 then use below formula
to get the median. Median = (max(arl[0], ar2[0]) + min(arl[1], ar2[1]))/2

8 Regular Expression Matching in Java

Problem:
Implement regular expression matching with support for . and **..

’

.’ Matches any single character.

"%’ Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).

The function prototype should be:

bool isMatch (const char *xs, const char xp)

Some examples:
isMatch ("aa","a") return false
isMatch a","aa") return true

isMatch ("aaa", ") return false

("
()
isMatch ("aa", "ax") return true
()
(
(

isMatch ("aa", ".+") return true

isMatch ("ab", ".+") return true

isMatch ("aab", "c*axb") return true
Analysis

First of all, this is one of the most difficulty problems. It is hard to handle many cases.
The problem should be simplified to handle 2 basic cases:

e the second char of pattern is "*"
e the second char of pattern is not "*"

nun

For the 1st case, if the first char of pattern is not ".", the first char of pattern and
string should be the same. Then continue to match the left part.

For the 2nd case, if the first char of pattern is "." or first char of pattern == the first i
char of string, continue to match the left.

Be careful about the offset.

Program Creek 251181

8 Regular Expression Matching in Java

Java Solution 1 (Short)

The following Java solution is accepted.

public class Solution {

public boolean isMatch(String s, String p) {

if(p.length() == 0)
return s.length() == 0;

//p’s length 1 is special case
if(p.length() == 1 || p.charAt(1l) != "*x"){
if(s.length() < 1 || (p.charAt(0) != ’".’ && s.charAt(0) !=
p.charAt (0)))
return false;

return isMatch(s.substring(l), p.substring(l)):;

lelse{

int len = s.length();

int 1 = -1;
while(i<len && (1 < 0 || p.charAt(0) == ".’ || p.charAt(0) ==
s.charAt (1))) {
if (isMatch(s.substring(i+l), p.substring(2))
return true;
i++;
}

return false;

Java Solution 2 (More Readable)

public boolean isMatch(String s, String p) {

// base case

if (p.length() == 0) {
return s.length() == 0;

}

// special case

if (p.length() == 1) {

// 1f the length of s is 0, return false
if (s.length() < 1) {

return false;

26| 181 Program Creek

//1if the first does not match, return false
else if ((p.charAt(0) != s.charAt(0)) && (p.charAt(0) !=".")) {

return false;

// otherwise, compare the rest of the string of s and p.
else {

return isMatch(s.substring(l), p.substring(l)):;

// case 1: when the second char of p is not '’
if (p.charAt (1) != "%") {
if (s.length() < 1) {
return false;
}
if ((p.charAt(0) != s.charAt(0)) && (p.charAt(0) !=".")) {
return false;
} else {

return isMatch(s.substring(l), p.substring(l)):;

// case 2: when the second char of p is ’*’, complex case.
else {

//case 2.1: a char & '+’ can stand for 0 element

if (isMatch (s, p.substring(2))) {

return true;

//case 2.2: a char & '+’ can stand for 1 or more preceding element,

//so try every sub string

int i = 0;
while (i<s.length() && (s.charAt(i)==p.charAt(0) || p.charAt(0)==’
if (isMatch(s.substring(i + 1), p.substring(2))) {

return true;
}
i++;
}

return false;

) A

27| 181

9 Merge Intervals
9 Merge Intervals

Problem:

Given a collection of intervals, merge all overlapping intervals.

For example,
Given [1,3],I[2,6],1[8,10],[15,18],
return [1,6],[8,10],[15,18].

Thoughts of This Problem

The key to solve this problem is defining a Comparator first to sort the arraylist of
Intevals. And then merge some intervals.

The take-away message from this problem is utilizing the advantage of sorted list/ar-
ray.

Java Solution

class Interval {

int start:;

int end;

Interval () {
start = 0;
end = 0y

Interval (int s, int e) {
start = s;

end = e;

public class Solution {

public ArrayList<Interval> merge (ArrayList<Interval> intervals) {

if (intervals == null || intervals.size() <= 1)

return intervals;

// sort intervals by using self-defined Comparator

Collections.sort (intervals, new IntervalComparator());
ArrayList<Interval> result = new ArrayList<Interval>();

Interval prev = intervals.get (0);

28] 181 Program Creek

for (int i = 1; i < intervals.size(); 1i++) {

Interval curr = intervals.get (i)

if (prev.end >= curr.start) {
// merged case
Interval merged = new Interval (prev.start, Math.max(prev.end,
curr.end)) ;
prev = merged;
} else {
result.add (prev);

prev = curr;

result.add(prev) ;

return result;

class IntervalComparator implements Comparator<Interval> {
public int compare(Interval il, Interval i2) {

return il.start - i2.start;

10 Insert Interval

Problem:

Given a set of non-overlapping & sorted intervals, insert a new interval into the intervals
(merge if necessary).

Example 1:

Given intervals [1,31,16,9], insert and merge [2,5] in as [1,5],16,9].
Example 2:
Given [1,2],1[3,51,16,71,18,10],[12,16], insert and merge [4,9] in as

[1,21,[3,10]1,[12,16].

This is because the new interval [4,9] overlaps with [3,5],[6,7],1[8,10].

29 | 181

10 Insert Interval

Thoughts of This Problem

Quickly summarize 3 cases. Whenever there is intersection, created a new interval.

Current
l
l |
Case 1 New | |
I I
Case 2 i | New
(|
1 [New |)
Case 3 " New] |
[[New).
[l New])
1 1 I
min max
Java Solution
/**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval () { start = 0; end = 0; }
* Interval (int s, int e) { start = s; end = e; }
*)
x/

public class Solution ({
public ArrayList<Interval> insert (ArrayList<Interval> intervals, Interval

newInterval) {
ArrayList<Interval> result = new ArrayList<Interval>():;

for (Interval interval: intervals) {
if (interval.end < newInterval.start) {
result.add (interval) ;
lelse if (interval.start > newInterval.end) {
result.add (newInterval) ;
newInterval = interval;
}else if (interval.end >= newInterval.start || interval.start <=

newInterval.end) {

30| 181 Program Creek

newInterval = new Interval (Math.min (interval.start,

newInterval.start), Math.max(newInterval.end, interval.end)):;

result.add (newInterval) ;

return result;

11 Two Sum

Given an array of integers, find two numbers such that they add up to a specific target
number.

The function twoSum should return indices of the two numbers such that they add
up to the target, where index1 must be less than index2. Please note that your returned
answers (both index1 and index2) are not zero-based.

For example:

Input: numbers={2, 7, 11, 15}, target=9
Output: indexl=1, index2=2

Naive Approach

This problem is pretty straightforward. We can simply examine every possible pair of
numbers in this integer array.
Time complexity in worst case: O(n2).

public static int[] twoSum(int[] numbers, int target) ({
int[] ret = new int([2];
for (int i = 0; 1 < numbers.length; i++) {
for (int 3 =i + 1; 3 < numbers.length; J++) {

if (numbers[i] + numbers[]j] == target) {
ret[0] = 1 + 1;
ret[1l] = j + 1;

}

return ret;

31181

Can we do better?

Better Solution

Use HashMap to store the target value.

public class Solution ({

public int[] twoSum(int[] numbers, int target) {
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
int[] result = new int[2];
for (int i = 0; i < numbers.length; i++) {

if (map.containsKey (numbers[i])) {

int index = map.get (numbers[i]) ;
result[0] = index+1 ;
result[l] = i+1;
break;
} else {

map.put (target - numbers[i], 1i);

return result;

}

Time complexity depends on the put and get operations of HashMap which is nor-
mally O(1).

Time complexity of this solution: O(n).

12 Two Sum Il Input array is sorted

This problem is similar to Two Sum.

To solve this problem, we can use two points to scan the array from both sides. See
Java solution below:

public int[] twoSum(int[] numbers, int target) ({
if (numbers == null || numbers.length == 0)

return null;

int 1 = 05

int j = numbers.length - 1;

while (i < j) {

int x

numbers [i] + numbers([j];

32| 181

if (x < target) {
kil g

} else if (x > target) {
==

} else {

return new int[] { 1 + 1, j + 1 };

return null;

13 Two Sum lll Data structure design

Design and implement a TwoSum class. It should support the following operations:
add and find.

add - Add the number to an internal data structure. find - Find if there exists any
pair of numbers which sum is equal to the value.

For example,

add (1) ;
add (3) ;
add (5) ;
find (4) -> true
find (7) -> false

Java Solution

Since the desired class need add and get operations, HashMap is a good option for
this purpose.

public class TwoSum {
private HashMap<Integer, Integer> elements = new HashMap<Integer,

Integer>();

public void add(int number) {
if (elements.containsKey (number)) {
elements.put (number, elements.get (number) + 1);
} else {

elements.put (number, 1);

33| 181

public boolean find(int value) {

for (Integer i : elements.keySet()) {
int target = value - i;
if (elements.containsKey (target)) {
if (i == target && elements.get (target) < 2) {

continue;

}

return true;

}

return false;

14 3Sum

Problem:
Given an array S of n integers, are there elements a, b, c in S such that a + b + ¢ = 0?
Find all unique triplets in the array which gives the sum of zero.
Note: Elements in a triplet (a,b,c) must be in non-descending order. (ie,a < b < ¢)
The solution set must not contain duplicate triplets.

For example, given array S = {-1 0 1 2 -1 -4},

A solution set is:
(-1, 0, 1)
(-1, -1, 2)

Naive Solution

Naive solution is 3 loops, and this gives time complexity O(n3). Apparently this is not
an acceptable solution, but a discussion can start from here.

public class Solution {
public ArraylList<ArrayList<Integer>> threeSum(int[] num) {
//sort array

Arrays.sort (num) ;
ArrayList<ArrayList<Integer>> result = new

ArrayList<ArrayList<Integer>> () ;
ArrayList<Integer> each = new ArraylList<Integer> () ;

34| 181

14 3Sum

for (int i1=0; i<num.length; i++) {
if (num[i] > 0) break;

for (int j=i+1; j<num.length; j++) {
if (num[i] + num[j] > 0 && num[j] > 0) break;

for (int k=j+1; k<num.length; k++) {

if(num[i] + num[j] + num[k] == 0) {

each.add (numf[i]) ;
each.add (num[j]) ;
each.add (num[k]) ;
result.add (each);

each.clear () ;

return result;

* The solution also does not handle duplicates. Therefore, it is not only time ineffi-
cient, but also incorrect.
Result:

Submission Result: Output Limit Exceeded

Better Solution

A better solution is using two pointers instead of one. This makes time complexity of
0(n2).

To avoid duplicate, we can take advantage of sorted arrays, i.e., move pointers by >1
to use same element only once.

public ArrayList<ArrayList<Integer>> threeSum(int[] num) {
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();

if (num.length < 3)

return result;

// sort array

Arrays.sort (num) ;
for (int i = 0; i < num.length - 2; i++) {

// //avoid duplicate solutions

if (1 == || num[i] > num[i - 1]) {

Program Creek 351 181

int negate = -num([i];
int start = 1i + 1;

int end = num.length - 1;

while (start < end) {
//case 1
if (num[start] + num[end] == negate) {
ArraylList<Integer> temp = new ArrayList<Integer>() ;
temp.add (num[i]) ;
temp.add (num[start]);
temp.add (num[end]) ;

result.add (temp) ;
start++;
end-—;

//avoid duplicate solutions

while (start < end && num[end] == num[end + 11])
end-—;
while (start < end && num[start] == num[start - 1])
start++;
//case 2

} else if (num[start] + num[end] < negate) {
start++;

//case 3

} else {

end--;

return result;

15 4Sum

Given an array S of n integers, are there elements a, b, c, and d in S such thata+b + ¢
+ d = target? Find all unique quadruplets in the array which gives the sum of target.

Note: Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a <
b £ c £ d) The solution set must not contain duplicate quadruplets.

36 | 181

15 4Sum

For example, given array S = {1 0 -1 0 -2 2},

and target = 0.

A solution set is:
(-1, 0, 0, 1)

(-2, -1, 1, 2)
(-2, 0, 0, 2)

Thoughts

A typical k-sum problem. Time is N to the poser of (k-1).

Java Solution

public ArrayList<ArrayList<Integer>> fourSum(int[] num, int target) {

Arrays.sort (num) ;

HashSet<ArrayList<Integer>> hashSet = new HashSet<ArrayList<Integer>>();

ArraylList<ArrayList<Integer>> result = new ArraylList<ArrayList<Integer>>();

for (int 1 = 0; 1 < num.length; i++) {
for

(int j = i + 1; j < num.length; J++) {
int k = j + 1;

int 1 = num.length - 1;

while (k < 1) {

int sum = num[i] + num[j] + num[k] + num[1l];

if (sum > target) {

1--;

} else if (sum < target) {
k++;

} else if (sum == target) {

ArraylList<Integer> temp = new ArrayList<Integer> () ;
temp.add (num[i]) ;

temp.add

’

num

’

’

([31)
temp.add (num[k]) ;
temp.add (num[1])
if ('hashSet.contains (temp)) {
hashSet.add (temp) ;
result.add (temp) ;

Program Creek 371 181

return result;

Here is the hashCode method of ArrayList. It makes sure that if all elements of two
lists are the same, then the hash code of the two lists will be the same. Since each
element in the ArrayList is Integer, same integer has same hash code.

int hashCode = 1;
Iterator<E> i = list.iterator();
while (i.hasNext ()) {
E obj = i.next();
hashCode = 31lxhashCode + (obj==null ? 0 : obj.hashCode())

16 3Sum Closest

Given an array S of n integers, find three integers in S such that the sum is closest to
a given number, target. Return the sum of the three integers. You may assume that
each input would have exactly one solution. For example, given array S = -1 2 1 -4,
and target = 1. The sum that is closest to the targetis 2. (-1 +2 + 1 = 2).

Thoughts

This problem is similar with 2 Sum. This kind of problem can be solve by using similar
approach, i.e., two pointers from both left and right.

Java Solution

public class Solution {
public int threeSumClosest (int[] num, int target) {
int min = Integer.MAX_VALUE;

int result = 0;
Arrays.sort (num) ;

for (int 1 = 0; i < num.length; i++) {

int j =1 + 1;

38| 181

int k = num.length - 1;
while (3 < k) {
int sum = num([i] + num[j] + num[k];

int diff = Math.abs(sum - target):;

if(diff == 0) return O;

if (diff < min) {
min = diff;
result = sum;

}

if (sum <= target) {
Jar 2

} else {
k==;

return result;

Time Complexity is O(n2).

17 String to Integer (atoi)

Problem:
Implement atoi to convert a string to an integer.

Hint: Carefully consider all possible input cases. If you want a challenge, please do
not see below and ask yourself what are the possible input cases.

Notes: Itis intended for this problem to be specified vaguely (ie, no given input
specs). You are responsible to gather all the input requirements up front.

Thoughts for This Problem

The vague description give us space to consider different cases.

null or empty string
. white spaces
. +/- sign

calculate real value

g o w N

handle min & max

39| 181

Java Solution

public int atoi (String str) {
if (str == null || str.length() < 1)

return 0;

// trim white spaces

str = str.trim();

char flag = "+7;

// check negative or positive

int i = 0;

if (str.charAt(0) == "-") {
flag = "=’
alak4k g

} else if (str.charAt (0) == "+’") {
alak4k g

}

// use double to store result
double result = 0;

// calculate value
while (str.length() > i && str.charAt (i) >= "0’ && str.charAt(i) <= 79’) {

result = result » 10 + (str.charAt(i) = 707);
i++;

}

if (flag == "-")
result = -result;

// handle max and min
if (result > Integer.MAX_VALUE)
return Integer.MAX_VALUE;

if (result < Integer.MIN_VALUE)
return Integer.MIN_VALUE;

return (int) result;

Thanks to the comment below. The solution above passes LeetCode online judge,
but it haven’t considered other characters. [will update this later.

40 | 181

18 Merge Sorted Array

18 Merge Sorted Array

Problem:
Given two sorted integer arrays A and B, merge B into A as one sorted array.
Note: You may assume that A has enough space to hold additional elements from
B. The number of elements initialized in A and B are m and n respectively.

Thoughts for This Problem

The key to solve this problem is moving element of A and B backwards. If B has some
elements left after A is done, also need to handle that case.

The takeaway message from this problem is that the loop condition. This kind of
condition is also used for merging two sorted linked list.

Java Solution 1

public class Solution {

public void merge (int A[], int m, int B[], int n) {

while(m > 0 && n > 0) {
if (A[m-1] > B[n-11) {

Alm+n-1] = A[m-1];
m--;

lelse{
A[m+n-1] = B[n-1];

==

while(n > 0) {
A[m+n-1] = B[n-1];

==

Java Solution 2

The loop condition also can use m+n like the following.

public void merge (int A[], int m, int B[], int n) {
int i = m - 1;
int j = n - 1;

int k = m + n - 1;

Program Creek 41] 181

while (k >= 0) {

if (3 <0 || (i > 0 && A[i] > B[]J]))
Alk--] = A[i--];

@LeE
Alk--]1 = B[j--1;

19 Valid Parentheses

Problem:

Given a string containing just the characters '(, '), ”, ”, ’[’ and ']’, determine if the
input string is valid. The brackets must close in the correct order, "()" and "()[]" are all
valid but "(]" and "([)]" are not.

Thoughts about This Problem

Character is not a frequently used class, so need to know how to use it.

Java Solution

public static boolean isValid(String s) {
HashMap<Character, Character> map = new HashMap<Character, Character>();
map.put (" (', ")’);
map.put (" [, "1");
map.put (" {*, "}');

Stack<Character> stack = new Stack<Character> () ;

for (int i = 0; i < s.length(); i++) {
char curr = s.charAt (i) ;
if (map.keySet () .contains (curr)) {

stack.push (curr) ;

} else if (map.values () .contains (curr)) {
if (!stack.empty () && map.get (stack.peek()) == curr) {
stack.pop () ;
} else {

return false;

42 | 181

return stack.empty() ;

Simplified Java Solution

Almost identical, but convert string to char array at the beginning.

public static boolean isValid(String s) {
char[] charArray = s.toCharArray():;

HashMap<Character, Character> map = new HashMap<Character, Character>();
map.put (" (", ")");
map.put (" [, "1");
map.put (" {*, "}");

Stack<Character> stack = new Stack<Character>();
for (Character c : charArray) {

if (map.keySet () .contains(c)) {
stack.push (c) ;

} else if (map.values () .contains(c)) {
if (!stack.isEmpty () && map.get (stack.peek()) == c) {
stack.pop () ;
} else {

return false;

}

return stack.isEmpty () ;

20 Implement strStr()

Problem:

Implement strStr(). Returns a pointer to the first occurrence of needle in haystack, or
null if needle is not part of haystack.

43| 181

Thoughts

First, need to understand the problem correctly, the pointer simply means a sub string.
Second, make sure the loop does not exceed the boundaries of two strings.

Java Solution

public String strStr (String haystack, String needle) {

int needlelen = needle.length{();
int haystackLen = haystack.length() ;

if (needlelen == haystackLen && needlelen == 0)

return "";

if (needlelen == 0)

return haystack;

for (int 1 = 0; i < haystackLen; i++) {
// make sure in boundary of needle
if (haystacklLen - i + 1 < needlelen)

return null;

int k = i;

int j 0;

while (j < needlelen && k < haystackLen && needle.charAt(j) =
haystack.charAt (k)) {
J++;

k++;
if (j == needlelen)

return haystack.substring(i);

return null;

From Tia:

You have to check if a String == null before call length(), otherwise it will throw Null-
PointerException.

44 | 181

21 Set Matrix Zeroes

21 Set Matrix Zeroes

Given a m x n matrix, if an element is O, set its entire row and column to 0. Do it in
place.
Thoughts about This Problem
This problem can solve by following 4 steps:

e check if first row and column are zero or not
e mark zeros on first row and column
e use mark to set elements

e set first column and row by using marks in step 1

Java Solution

public class Solution {

public void setZeroes (int[][] matrix) {
boolean firstRowZero = false;
boolean firstColumnZero = false;

//set first row and column zero or not
for (int i=0; i<matrix.length; i++) {
if (matrix[i][0] == 0) {
firstColumnZero = true;

break;

for (int 1=0; i<matrix[0].length; i++) {
if (matrix[0] [1] == 0) {
firstRowZero = true;

break;

//mark zeros on first row and column
for(int i=1; i<matrix.length; i++) {
for (int j=1; j<matrix[0].length; j++) {

if (matrix[i][J] == 0){
matrix[i][0] = 0;
matrix[0][j] = 0;

Program Creek 451 181

//use mark to set elements
for (int i=1; i<matrix.length; i++) {
for (int j=1; j<matrix[0].length; j++) {
if (matrix[i] [0] == || matrix[0][j] == 0){
matrix[i]l[j] = 0;

//set first column and row
if (firstColumnZero) {
for (int i1i=0; i<matrix.length; i++)

matrix[i][0] = 0;

if (firstRowZero) {
for (int i1i=0; i<matrix[0].length; i++)

matrix[0][i] = 0;

22 Search Insert Position

Given a sorted array and a target value, return the index if the target is found. If not,
return the index where it would be if it were inserted in order. You may assume no
duplicates in the array.

Here are few examples.

[1,3,2.6], § =—> 2
[1,385,6182 gl
[1,3,5,6]1, 7 —> 4
Ll,3,5%]l, 04> O

Solution 1

Naively, we can just iterate the array and compare target with ith and (i+1)th element.
Time complexity is O(n)

public class Solution {

public int searchInsert (int[] A, int target) ({

46 | 181

if (A==null) return O;
if (target <= A[0]) return 0;
for (int i=0; i<A.length-1; i++) {

if (target > A[i] && target <= A[i+1l]) {

return i+1;

return A.length;

Solution 2

This also looks like a binary search problem. We should try to make the complexity to
be O(nlogn).

public class Solution {
public int searchInsert(int[] A, int target) {
if (A==null| |A.length==0)

return 0;

return searchInsert (A,target,0,A.length-1);

public int searchInsert(int[] A, int target, int start, int end) {
int mid=(start+end)/2;

if (target==A[mid])

return mid;
else if (target<A[mid])

return start<mid?searchInsert (A, target,start,mid-1) :start;
else

return end>mid?searchInsert (A, target,mid+1,end) : (end+1) ;

47| 181

23 Longest Consecutive Sequence Java
23 Longest Consecutive Sequence Java

Given an unsorted array of integers, find the length of the longest consecutive elements
sequence.

For example, given [100, 4, 200, 1, 3, 2], the longest consecutive elements sequence
should be [1, 2, 3, 4]. Its length is 4.

Your algorithm should run in O(n) complexity.

Thoughts

Because it requires O(n) complexity, we can not solve the problem by sorting the array
first. Sorting takes at least O(nlogn) time.

Java Solution

We can use a HashSet to add and remove elements. HashSet is implemented by using
a hash table. Elements are not ordered. The add, remove and contains methods have
constant time complexity O(1).

public static int longestConsecutive (int[] num) {
// if array is empty, return O
if (num.length == 0) {

return 0O;

Set<Integer> set = new HashSet<Integer>();

int max = 1;

for (int e : num)
set.add (e) ;

for (int e : num) {
int left = e - 1;
int right = e + 1;

int count = 1;

while (set.contains (left)) {
count++;
set.remove (left) ;
left--;

while (set.contains (right)) {
count++;
set.remove (right) ;

right++;

48 | 181 Program Creek

max = Math.max (count, max);

return max;

After an element is checked, it should be removed from the set. Otherwise, time
complexity would be O(mn) in which m is the average length of all consecutive se-
quences.

To clearly see the time complexity, I suggest you use some simple examples and
manually execute the program. For example, given an array 1,2,4,5,3, the program
time is m. m is the length of longest consecutive sequence.

We do have an extreme case here: If n is number of elements, m is average length
of consecutive sequence, and m==n, then the time complexity is O(n2). The reason is
that in this case, no element is removed from the set each time. You can use this array
to get the point: 1,3,5,7,9.

24 Valid Palindrome

Given a string, determine if it is a palindrome, considering only alphanumeric charac-
ters and ignoring cases.

For example, "Red rum, sir, is murder” is a palindrome, while "Programcreek is
awesome" is not.

Note: Have you consider that the string might be empty? This is a good question to
ask during an interview.

For the purpose of this problem, we define empty string as valid palindrome.

Thoughts

From start and end loop though the string, i.e., char array. If it is not alpha or num-
ber, increase or decrease pointers. Compare the alpha and numeric characters. The
solution below is pretty straightforward.

Java Solution 1 - Naive

public class Solution {
public boolean isPalindrome (String s) {

if (s == null) return false;

if (s.length() < 2) return true;

49 | 181

24 Valid Palindrome

char[] charArray = s.toCharArray();

int len = s.length();

int i=0;

int j=len-1;

while (i<3j) {
char left, right;

while (i<len-1 && !isAlpha (left) && !isNum(left)) {
alak4F g

left = charArray[i];

while (j>0 && !isAlpha (right) && !'isNum(right)) {
j--s
right = charArray[jl:

if (1 >= 5)

break;

left = charArrayl[i];
right = charArrayl[j]l;

if(!isSame (left, right)) {

return false;

}

return true;

public boolean isAlpha (char a) {
if((a >= "a’" && a <= "z2") || (a > "A" && a <= "2")){
return true;
telse(

return false;

public boolean isNum (char a) {
if(a >= 7’0" && a <= "9"){
return true;
telse(

return false;

50| 181 Program Creek

24 Valid Palindrome

public boolean isSame (char a, char Db) {
if (isNum(a) && isNum (b)) {
return a == b;
}else if (Character.toLowerCase(a) == Character.toLowerCase (b)) {
return true;
telse(

return false;

Java Solution 2 - Using Stack

This solution removes the special characters first. (Thanks to Tia)

public boolean isPalindrome (String s) {

s = s.replaceAll (" ["a-zA-Z0-9]", "") .toLowerCase() ;

int len = s.length();
if (len < 2)

return true;

Stack<Character> stack = new Stack<Character> () ;

int index = 0;
while (index < len / 2) {
stack.push (s.charAt (index)) ;

index++;

if (len & 2 == 1)

index++;

while (index < len) {
if (stack.empty())

return false;

char temp = stack.pop();

if (s.charAt (index) != temp)
return false;

else

index++;

return true;

Program Creek 511181

Java Solution 3 - Using Two Pointers

In the discussion below, April and Frank use two pointers to solve this problem. This
solution looks really simple.

public class ValidPalindrome {
public static boolean isValidPalindrome (String s) {
if (s==null| |s.length()==0) return false;

s = s.replaceAll ("["a-zA-20-9]", "").toLowerCase() ;

System.out.println(s) ;
for(int i = 0; i < s.length() ; i++){

if(s.charAt (i) != s.charAt(s.length() - 1 - 1i)){

return false;

return true;

public static void main(String[] args) {

String str = "A man, a plan, a canal: Panama";

System.out.println (isValidPalindrome (str));

25 Spiral Matrix

Given a matrix of m x n elements (m rows, n columns), return all elements of the
matrix in spiral order.
For example, given the following matrix:

You should return [1,2,3,6,9,8,7,4,5].

52| 181

25 Spiral Matrix

Java Solution 1

If more than one row and column left, it can form a circle and we process the circle
Otherwise, if only one row or column left, we process that column or row ONLY.

public class Solution {
public ArrayList<Integer> spiralOrder (int[][]

Arraylist<Integer> result = new ArraylList<Integer>();

matrix) {

return result;

if (matrix == null || matrix.length == 0)
int m = matrix.length;
int n = matrix[0].length;

int x=0;

int y=0;

while (m>0 && n>0) {

//if one row/column left, no circle can be formed

if (m==1) {
for (int i=0; i<n;
result.add (matrix[x] [y++]);

i++) {

}
break;
}else if (n==1) {
for (int i=0; i<m;
result.add (matrix[x++][y]);

i++) {

}
break;

//below, process a circle

//top - move right
for (int 1=0;i<n-1;i++) {
result.add (matrix[x] [y++]1);

//right - move down
for (int 1i=0;i<m-1;i++) {
result.add (matrix[x++][y]);

//bottom - move left
for (int i=0;i<n-1;i++) {
result.add (matrix[x] [y—--1);

//left - move up

53 | 181

Program Creek

25 Spiral Matrix

for (int i=0;i<m-1;i++) {

result.add (matrix[x--]1[y]);

x++;
y++;
m=m-2;

n=n-2;

return result;

Java Solution 2

We can also recursively solve this problem. The solution’s performance is not better
than Solution or as clear as Solution 1. Therefore, Solution 1 should be preferred.

public class Solution {
public ArrayList<Integer> spiralOrder (int[][] matrix) {
if (matrix==null || matrix.length==0)

return new ArrayList<Integer>();

return spiralOrder (matrix, 0,0,matrix.length,matrix[0].length);

public ArrayList<Integer> spiralOrder (int [][] matrix, int x, int y, int
m, int n) {

ArrayList<Integer> result = new ArrayList<Integer> () ;

if (m<=0] |n<=0)

return result;

//only one element left
if (m==lgs&n==1) {
result.add (matrix[x][y]);

return result;

//top — move right
for (int i=0;i<n-1;i++) {

result.add (matrix[x] [y++]1);

//right - move down

for (int i=0;i<m-1;i++) {

54| 181 Program Creek

result.add (matrix[x++][y]);

//bottom - move left
if (m>1) {
for(int i=0;i<n-1;i++) {

result.add (matrix[x] [y--1);

//left - move up
if(n>1) {
for(int i=0;i<m-1;i++) {

result.add (matrix[x--]1[y]):

if (m==1| |n==1)
result.addAll (spiralOrder (matrix, x, y, 1, 1));
else
result.addAll (spiralOrder (matrix, x+1, y+1, m-2, n-2));

return result;

26 Search a 2D Matrix

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix
has properties:

1) Integers in each row are sorted from left to right. 2) The first integer of each row
is greater than the last integer of the previous row.

For example, consider the following matrix:

x, 3, 5, 71,
[io, 11, 16, 20],
[23, 30, 34, 50]

Given target = 3, return true.

55 | 181

26.1 Java Solution

This is a typical problem of binary search.

You may try to solve this problem by finding the row first and then the column.

There is no need to do that. Because of the

matrix’s special features, the matrix can be

considered as a sorted array. Your goal is to find one element in this sorted array by

using binary search.

public class Solution ({
public boolean searchMatrix (int[][]

if (matrix==null || matrix.length==

return false;

matrix.length;

int m

int n matrix[0].length;
int start = 0;

int end = m*n-1;

while (start<=end) {
int mid=(start+end)/2;
int midX=mid/n;

int midY=mid%n;

if (matrix [midX] [midY]==target)

return true;

if(matrix [midX] [midY]<target) {
start=mid+1;
lelse{

end=mid-1;

return false;

matrix, int target) {

0 || matrix[0].length==0)

27 Rotate Image

You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).

Follow up: Could you do this in-place?

56 | 181

27 Rotate Image

Naive Solution

In the following solution, a new 2-dimension array is created to store the rotated
matrix, and the result is assigned to the matrix at the end. This is WRONG! Why?

public class Solution {
public void rotate (int[][] matrix) {
if (matrix == null || matrix.length==0)

return ;
int m = matrix.length;
int[][] result = new int[m] [m];
for (int i=0; i<m; i++) {

for (int j=0; j<m; j++) {

result[j][m-1-i] = matrix[i][]j]:

matrix = result;

The problem is that Java is pass by value not by refrence! "matrix" is just a reference
to a 2-dimension array. If "matrix" is assigned to a new 2-dimension array in the
method, the original array does not change. Therefore, there should be another loop
to assign each element to the array referenced by "matrix". Check out "Java pass by

value."

public class Solution ({
public void rotate (int[][] matrix) {
if (matrix == null || matrix.length==0)

return ;
int m = matrix.length;
int[][] result = new int[m] [m];
for(int i=0; i<m; 1i++) {

for (int j=0; j<m; J++) {
result([j] [m-1-1] = matrix[i] [J];

for (int 1=0; i<m; i++) {
for (int J=0; j<m; J++) {

matrix[i] [j] = result[i][]];

Program Creek 571 181

In-place Solution

By using the relation "matrix[i][j] = matrix[n-1-j][i]", we can loop through the matrix.

public void rotate (int[][] matrix) {
int n = matrix.length;
for (int i = 0; 1 < n / 2; i++) {

for (int j = 0; j < Math.ceil (((double) n) / 2.); J++) {

int temp = matrix[i][]j];

matrix[i][j] = matrix[n-1-3]1[i];
matrix[n-1-j]1[i] = matrix[n-1-i][n-1-3];
matrix[n-1-i] [n-1-j] = matrix[j]l[n-1-i];
matrix[j][n-1-i] = temp;

28 Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may
move to adjacent numbers on the row below.
For example, given the following triangle

(2],
[3,41,
[6,5,7],
[4,1,8,3]

The minimum path sum from top to bottom is 11 (i.e, 2 + 3+ 5 + 1 = 11).
Note: Bonus point if you are able to do this using only O(n) extra space, where n is
the total number of rows in the triangle.

Top-Down Approach (Wrong Answer!)

This solution gets wrong answer! [will try to make it work later.

public class Solution {

58 | 181

28 Triangle

public int minimumTotal (ArrayList<ArrayList<Integer>> triangle) {

int[] temp = new int[triangle.size()];
int minTotal = Integer.MAX_VALUE;

for (int i=0; i< temp.length; i++) {

temp[i] = Integer.MAX_VALUE;

if (triangle.size() == 1) {
return Math.min(minTotal, triangle.get (0).get(0)):;

int first = triangle.get (0).get (0);

for (int i = 0; i < triangle.size() - 1; i++) {
for (int j = 0; J <= 1i; Jj++) {

int a, b;

if(i==0 && j==0) {
a = first + triangle.get (i + 1).get(3j):
b = first + triangle.get(i + 1).get(j + 1);

lelse{
a = temp[j] + triangle.get (i + 1).get(Jj):
b = temp[j] + triangle.get (i + 1).get(j + 1);

temp[j] = Math.min(a, templ[j]):
temp[]j + 1] = Math.min (b, temp[j + 11);

for (int e : temp) {
if (e < minTotal)

minTotal = e;

return minTotal;

Bottom-Up (Good Solution)

We can actually start from the bottom of the triangle.

public int minimumTotal (ArrayList<ArrayList<Integer>> triangle) ({

Program Creek 591 181

int[] total = new int[triangle.size()];

int 1 = triangle.size() - 1;
for (int i = 0; i1 < triangle.get(l).size(); i++) {
total[i] = triangle.get(l).get(i):;

// iterate from last second row

for (int i = triangle.size() - 2; i >= 0; i--) {
for (int j = 0; j < triangle.get(i + 1).size() - 1; j++) {
total[j] = triangle.get (i) .get(j) + Math.min(total[j], totall[j + 11);

return total[0];

29 Distinct Subsequences Total

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by
deleting some (can be none) of the characters without disturbing the relative positions
of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is
not).

Here is an example: S = "rabbbit", T = "rabbit"

Return 3.

Thoughts

When you see string problem that is about subsequence or matching, dynamic pro-
gramming method should come to your mind naturally. The key is to find the chang-
ing condition.

Java Solution 1

Let W(i, j) stand for the number of subsequences of S(0, i) in T(O, j). If S.charAt(i) ==
T.charAt(j), W(i, j) = W(i-1, j-1) + W(i-1,j); Otherwise, W(i, j) = W(i-1,j).

public int numDistincts (String S, String T) {
int[][] table = new int[S.length() + 1][T.length() + 1];

for (int i = 0; 1 < S.length(); i++)

60 | 181

29 Distinct Subsequences Total

table[i] [0] = 1;
for (int 1 = 1; i <= S.length(); i++) {
for (int j = 1; j <= T.length(); j++) {
if (S.charAt(i - 1) == T.charAt(j - 1)) {
table[i] [j] += table[i - 1][]J] + table[i - 1][3 - 11;
} else {

table[i] [§] += tableli - 11[j]:

return table[S.length()]I[T.length()];

Java Solution 2

Do NOT write something like this, even it can also pass the online judge.

public int numDistinct (String S, String T) {
HashMap<Character, ArraylList<Integer>> map = new HashMap<Character,
ArrayList<Integer>> () ;

for (int i = 0; i < T.length(); i++) {

if (map.containsKey (T.charAt(i))) {
map.get (T.charAt(i)) .add (i) ;
} else {

ArraylList<Integer> temp = new ArrayList<Integer> () ;
temp.add (i) ;
map.put (T.charAt (i), temp):;

int[] result = new int[T.length() + 17];
result[0] = 1;

for (int i = 0; i < S.length(); i++) {

char ¢ = S.charAt(i);

if (map.containsKey(c)) {

ArraylList<Integer> temp = map.get (c);

int[] old = new int[temp.size()];
for (int j = 0; j < temp.size(); J++)
0ld[]j] = result|[temp.get(]j)];

// the relation
for (int j = 0; j < temp.size(); j++)
result[temp.get (j) + 1] = result[temp.get(j) + 1] + oldI[jl;

Program Creek 61] 181

return result[T.length()];

30 Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) which
has the largest sum.

For example, given the array 2,1, 3;4, 52,1, 5;4], the contiguous subarray [4, 1,2Z1]
has the largest sum = 6.

Wrong Solution

This is a wrong solution, check out the discussion below to see why it is wrong. [put
it here just for fun.

public class Solution {
public int maxSubArray (int[] A) {
int sum = 0;
int maxSum = Integer.MIN_VALUE;
for (int 1 = 0; 1 < A.length; i++) {
sum += A[i];

maxSum = Math.max (maxSum, sum);

if (sum < 0)

sum = 0;

return maxSum;

Dynamic Programming Solution

The changing condition for dynamic programming is "We should ignore the sum of
the previous n-1 elements if nth element is greater than the sum."

public class Solution {

public int maxSubArray (int[] A) {

62| 181

int max = A[O0];
int[] sum = new int[A.length];
sum[0] = A[0];

for (int 1 = 1; i < A.length; i++) {

sum[i] = Math.max (A[i], sum[i - 1] + A[i]);

max = Math.max (max, suml[i]);

return max;

Simple Solution

Mehdi provided the following solution in his comment.

public int maxSubArray (int[] A) {
int newsum=A[0];
int max=A[0];
for (int i=1;i<A.length;i++) {
newsum=Math.max (newsum+A[i] ,A[i]);
max= Math.max (max, newsum) ;
}

return max;

This problem is asked by Palantir.

31 Maximum Product Subarray

Find the contiguous subarray within an array (containing at least one number) which
has the largest product.

For example, given the array [2,3,-2,4], the contiguous subarray [2,3] has the largest
product = 6.

Java Solution 1 - Brute-force

public int maxProduct (int[] A) {
int max = Integer.MIN_VALUE;

for (int i=0; i<A.length; i++) {
for (int 1=0; 1<A.length; 1++) {

63| 181

if (i+1 < A.length) {
int product = calProduct (A, i, 1);

max = Math.max (product, max);

}

return max;

public int calProduct (int[] A, int i, int j){
int result = 1;
for (int m=i; m<=j; m++) {
result = result = A[m];

}

return result;

The time of the solution is O(n3).

Java Solution 2 - Dynamic Programming

This is similar to maximum subarray. Instead of sum, the sign of number affect the
product value.

When iterating the array, each element has two possibilities: positive number or
negative number. We need to track a minimum value, so that when a negative number
is given, it can also find the maximum value. We define two local variables, one tracks
the maximum and the other tracks the minimum.

public int maxProduct (int[] A) {
if (A==null || A.length==0)

return 0;

int maxLocal = A[O0];
int minLocal
int global = A[O0];

I
B
=

for (int i=1; i<A.length; i++) {
int temp = maxLocal;
maxLocal = Math.max (Math.max (A[i] *maxLocal, A[i]), A[i]*minLocal) ;
minLocal = Math.min(Math.min(A[i]*temp, A[i]), A[i]l*minLocal);

global = Math.max(global, maxLocal) ;
}

return global;

Time is O(n).

64| 181

32 Remove Duplicates from Sorted Array

32 Remove Duplicates from Sorted Array

Given a sorted array, remove the duplicates in place such that each element appear
only once and return the new length. Do not allocate extra space for another array,
you must do this in place with constant memory.

For example, given input array A = [1,1,2], your function should return length = 2,
and A is now [1,2].

Thoughts
The problem is pretty straightforward. It returns the length of array with unique

elements, but the original array need to be changed also. This problem should be
reviewed with Remove Duplicates from Sorted Array II.

Solution 1

// Manipulate original array
public static int removeDuplicatesNaive (int[] A) {
if (A.length < 2)
return A.length;

int j 0;

1;

int i

while (i < A.length) {
if (A[i] == A[J]) |
i++;
} else {
J++;
A[j] = A[1i];
i++;

return j + 1;

This method returns the number of unique elements, but does not change the orig-
inal array correctly. For example, if the input array is 1, 2, 2, 3, 3, the array will be
changed to 1, 2, 3, 3, 3. The correct result should be 1, 2, 3. Because array’s size can
not be changed once created, there is no way we can return the original array with
correct results.

Solution 2

Program Creek 65181

32 Remove Duplicates from Sorted Array

// Create an array with all unique elements
public static int[] removeDuplicates (int[] A) {
if (A.length < 2)

return A;

int 3 = 0;

int i 1;

while (i < A.length) {
if (A[i] == A[J]) |
b4k g
} else {
Jar 2
A[j] = A[i];
alak4k g

int[] B = Arrays.copyOf (A, j + 1);

return B;

public static void main (String[] args) {
int[] arr = { 1, 2, 2, 3, 3 };
arr = removeDuplicates (arr) ;

System.out.println(arr.length);

In this method, a new array is created and returned.

Solution 3

If we only want to count the number of unique elements, the following method is
good enough.

// Count the number of unique elements
public static int countUnique (int[] A) {
int count = 0;
for (int i = 0; 1 < A.length - 1; i++) {
if (A[i] == A[i + 11) {
count++;

}

return (A.length - count);

public static void main (String[] args) {
int([] arr = { 1, 2, 2, 3, 3 };

66 | 181 Program Creek

int size = countUnique (arr) ;

System.out.println (size) ;

33 Remove Duplicates from Sorted Array
Il

Follow up for "Remove Duplicates": What if duplicates are allowed at most twice?
For example, given sorted array A = [1,1,1,2,2,3], your function should return length
=5, and A is now [1,1,2,2,3].

Naive Approach

Given the method signature "public int removeDuplicates(int[] A)", it seems that we
should write a method that returns a integer and that’s it. After typing the following
solution:

public class Solution ({
public int removeDuplicates (int[] A) {
if(A == null || A.length == 0)

return 0;
int pre = A[O0];
boolean flag = false;

int count = 0;

for (int i=1; i<A.length; i++) {

int curr = A[i];
if (curr == pre) {
if(!flag) {

flag = true;
continue;
telse(
count++;
}
lelse(
pre = curr;

flag = false;

67 | 181

33 Remove Duplicates from Sorted Array Il

return A.length - count;

Online Judge returns:

Submission Result: Wrong Answer
Input: [1,1,1,2]

Output: [1,1,1]

Expected: [1,1,2]

So this problem also requires in-place array manipulation.

Correct Solution

We can not change the given array’s size, so we only change the first k elements of the
array which has duplicates removed.

public class Solution {
public int removeDuplicates (int[] A) {

if (A == null || A.length == 0)

return 0;

int pre = A[O0];
boolean flag = false;

int count = 0;

// index for updating
int o = 1;

for (int i = i < A.length; i++) {

1;
int curr = A[i];

if (curr == pre) {
if (!flag) {
flag = true;

A[o++] = curr;

continue;
} else {
count++;

}

} else {
pre = curr;
Alo++] = curr;
flag = false;

68 | 181

Program Creek

return A.length - count;

Better Solution

public class Solution ({
public int removeDuplicates (int[] A) {

if (A.length <= 2)

return A.length;

int prev = 1; // point to previous

int curr 2; // point to current

while (curr < A.length) {
if (A[curr] == Alprev] && A[curr] == A[prev - 1]1) {
curr++;
} else {
prev++;
Alprev] = Alcurr];

CULIEIErFr 2

return prev + 1;

34 Longest Substring Without Repeating
Characters

Given a string, find the length of the longest substring without repeating characters.
For example, the longest substring without repeating letters for "abcabcbb” is "abc",
which the length is 3. For "bbbbb" the longest substring is "b", with the length of 1.

Java Solution 1
The first solution is like the problem of "determine if a string has all unique characters"

in CC 150. We can use a flag array to track the existing characters for the longest
substring without repeating characters.

69 | 181

34 Longest Substring Without Repeating Characters

public int lengthOfLongestSubstring (String s) {
boolean[] flag = new boolean[256];

int result = 0;
int start = 0;

char[] arr = s.toCharArray();

for (int 1 = 0; i < arr.length; i++) {
char current = arr[i];
if (flaglcurrent]) {
result = Math.max (result, i - start);
// the loop update the new start point
// and reset flag array
// for example, abccab, when it comes to 2nd c,
// it update start from 0 to 3, reset flag for a,b
for (int k = start; k < i; k++) {
if (arr[k] == current) {
start = k + 1;

break;
}
flaglarr[k]] = false;
}
} else {
flag[current] = true;

result = Math.max (arr.length - start, result);

return result;

Java Solution 2

This solution is from Tia. It is easier to understand than the first solution.

The basic idea is using a hash table to track existing characters and their position.
When a repeated character occurs, check from the previously repeated character. How-
ever, the time complexity is higher - O(n3).

public static int lengthOfLongestSubstring(String s) {

char[] arr = s.toCharArray() ;

int pre = 0;
HashMap<Character, Integer> map = new HashMap<Character, Integer>();

for (int i = 0; i < arr.length; i++) {

70| 181 Program Creek

if (!map.containsKey(arr[i])) {
map.put (arr[i], 1i);

} else {
pre = Math.max (pre, map.size());
i = map.get(arr[i]);

map.clear () ;

return Math.max (pre, map.size());

Consider the following simple example.

abcda

When loop hits the second "a", the HashMap contains the following:

0 o o o
w N P O

The index i is set to 0 and incremented by 1, so the loop start from second element

again.

35 Longest Substring Which Contains 2

Unique Characters

This is a problem asked by Google.

Problem

Given a string, find the longest substring that contains only two unique characters. For
example, given "abcbbbbcccbdddadach”, the longest substring that contains 2 unique

character is "bcbbbbcccb”.

Naive Solution

Here is a naive solution. It works. Basically, it has two pointers that track the start of

the substring and the iteration cursor.

public static String subString(String s) {
// checking

71 181

35 Longest Substring Which Contains 2 Unique Characters

char[] arr = s.toCharArray();
int max = 0;

int j =0
int m = 0, n = 0;

HashSet<Character> set = new HashSet<Character> (),
set.add (arr[0]);

for (int 1 = 1; i < arr.length; i++) {
if (set.add(arr[il])) {
if (set.size() > 2) {

String str = s.substring(j, 1i):

//keep the last character only

set.clear () ;

set.add(arr[i - 1]);
if ((i - 3) > max) {
m Jrs
n = = 1g
max = i - j;

j = 1 - helper(str);

return s.substring(m, n + 1);

// This method returns the length that contains only one character from right
side.
public static int helper (String str) {
// null & illegal checking here
if(str == null) {

return 0;

if(str.length() == 1) {

return 1;

char[] arr = str.toCharArray();

char p = arr[arr.length - 1];

int result = 1;

for (int i = arr.length - 2; 1 >= 0; i--) {
if (p == arr[i]) {

72181 Program Creek

result++;
} else {

break;

return result;

Now if this question is extended to be "the longest substring that contains k unique
characters"”, what should we do? Apparently, the solution above is not scalable.

Scalable Solution

The above solution can be extended to be a more general solution which would allow
k distinct characters.

36 Palindrome Partitioning

Problem

Given a string s, partition s such that every substring of the partition is a palindrome.

Return all possible palindrome partitioning of s.
For example, given s = "aab", Return

[uaau’ "b"] ,

[uau’ uau’ "b"]

Java Solution 1

public ArrayList<ArrayList<String>> partition (String s) {
ArraylList<ArrayList<String>> result = new ArraylList<ArrayList<String>>();

if (s == null || s.length() == 0) {

return result;

ArrayList<String> partition = new ArrayList<String>();

addPalindrome (s, 0, partition, result):;

73] 181

36 Palindrome Partitioning

return result;

private void addPalindrome (String s, int start, ArrayList<String> partition,
ArraylList<ArrayList<String>> result) {
//stop condition
if (start == s.length()) {
ArraylList<String> temp = new ArrayList<String> (partition);

result.add(temp) ;

return;

}

for (int i = start + 1; i <= s.length(); i++) {
String str = s.substring(start, 1i);
if (isPalindrome (str)) {

partition.add (str) ;
addPalindrome (s, i, partition, result):;

partition.remove (partition.size() - 1);

private boolean isPalindrome (String str) {
int left = 0;
int right = str.length() - 1;

while (left < right) {

if (str.charAt(left) != str.charAt (right)) {

return false;

left++;
right--;

return true;

Dynamic Programming

The dynamic programming approach is very similar to the problem of longest palin-
drome substring.

public static List<String> palindromePartitioning(String s) {
List<String> result = new ArrayList<String>();

if (s == null)

74| 181 Program Creek

return result;

if (s.length() <= 1) {
result.add(s);

return result;
int length = s.length();
int[][] table = new int[length] [length];
// 1 is length, 1 is index of left boundary, j is index of right boundary
for (int 1 = 1; 1 <= length; 1++) {

for (int i = 0; i <= length - 1; i++) {
int j =1 + 1 - 1;

if (s.charAt (i) == s.charAt(j)) {
if (1 == [1 ==2) {
table[i] [j] = 1;
} else {
table[1] [j] = table[i + 11[3 - 11;
}
if (table[i]l[J] == 1) {

result.add(s.substring (i, j + 1))
}

} else {
table[i] [j] = 0;

return result;

37 Reverse Words in a String

Given an input string, reverse the string word by word.
For example, given s = "the sky is blue", return "blue is sky the".

Java Solution
This problem is pretty straightforward. We first split the string to words array, and

then iterate through the array and add each element to a new string. Note: String-
Builder should be used to avoid creating too many Strings. If the string is very long,

75| 181

using String is not scalable since String is immutable and too many objects will be
created and garbage collected.

class Solution {
public String reverseWords (String s) {
if (s == null || s.length() == 0) {

return

wu .
’

// split to words by space

String[] arr = s.split("™ ");

StringBuilder sb = new StringBuilder();

for (int i = arr.length - 1; i >= 0; --1) {
if (larr([i].equals("")) {

sb.append (arr[i]) .append (" ");

}
return sb.length() == 0 2?2 "" : sb.substring (0, sb.length() - 1);

38 Find Minimum in Rotated Sorted
Array

Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1
2456 7 might become 456701 2).
Find the minimum element.You may assume no duplicate exists in the array.

Thoughts

When we search something from a sorted array, binary search is almost a top choice.
Binary search is efficient for sorted arrays.

This problems seems like a binary search, and the key is how to break the array to
two parts, so that we only need to work on half of the array each time, i.e, when to
select the left half and when to select the right half.

If we pick the middle element, we can compare the middle element with the left-end
element. If middle is less than leftmost, the left half should be selected; if the middle
is greater than the leftmost, the right half should be selected. Using simple recursion,
this problem can be solve in time log(n).

In addition, in any rotated sorted array, the rightmost element should be less than
the left-most element, otherwise, the sorted array is not rotated and we can simply

76| 181

pick the leftmost element as the minimum.

Java Solution

Define a helper function, otherwise, we will need to use Arrays.copyOfRange() func-
tion, which may be expensive for large arrays.

public int findMin(int[] num) {

return findMin (num, 0, num.length - 1);

public int findMin (int[] num, int left, int right) {
if (left == right)
return num[left];
if ((right - left) == 1)

return Math.min (num[left], num[right]) ;

int middle = left + (right - left) / 2;

// not rotated
if (num[left] < num[right]) {

return num[left];

// go right side
} else if (num[middle] > num[left]) {

return findMin (num, middle, right);

// go left side
} else {

return findMin (num, left, middle) ;

39 Find Minimum in Rotated Sorted
Array Il

Problem
Follow up for "Find Minimum in Rotated Sorted Array": What if duplicates are al-

lowed?
Would this affect the run-time complexity? How and why?

77 181

Java Solution

This is a follow-up problem of finding minimum element in rotated sorted array with-
out duplicate elements. We only need to add one more condition, which checks if
the left-most element and the right-most element are equal. If they are we can simply
drop one of them. In my solution below, I drop the left element whenever the left-most
equals to the right-most.

public int findMin(int[] num) {

return findMin (num, 0, num.length-1);

public int findMin(int[] num, int left, int right) {
if (right==left) {
return num([left];
}
if (right == left +1) {
return Math.min (num[left], num[right]);
}
// 3 31333

int middle = (right-left)/2 + left;

// already sorted

if (num[right] > num[left]) {
return num[left];

//right shift one

}else if (num[right] == num[left]) {
return findMin (num, left+1l, right);

//go right

}else if (num[middle] >= num[left]) {
return findMin (num, middle, right) ;

//go left

lelse{

return findMin (num, left, middle) ;

40 Find Peak Element

A peak element is an element that is greater than its neighbors. Given an input array

where num[i] = num[i+1], find a peak element and return its index. The array may
contain multiple peaks, in that case return the index to any one of the peaks is fine.

You may imagine that num|[-1] = num[n] = -=. For example, in array [1, 2, 3, 1], 3 is

78| 181

a peak element and your function should return the index number 2.

Thoughts

This is a very simple problem. We can scan the array and find any element that is
greater can its previous and next. The first and last element are handled separately.

Java Solution

public class Solution {
public int findPeakElement (int[] num) {
int max = num([0];
int index = 0;

for (int i=1; i<=num.length-2; i++) {

int prev = num[i-1];
int curr = numl[i];
int next = num[i+1];

if (curr > prev && curr > next && curr > max) {
index = i;

max = Ccurr;

if (num[num.length-1] > max) {

return num.length-1;

return index;

41 Min Stack

Design a stack that supports push, pop, top, and retrieving the minimum element in

constant time.
push(x) - Push element x onto stack. pop() - Removes the element on top of the
stack. top() - Get the top element. getMin() - Retrieve the minimum element in the

stack.

79| 181

Thoughts

An array is a perfect fit for this problem. We can use a integer to track the top of the
stack. You can use the Stack class from Java SDK, but I think a simple array is more

efficient and more beautiful.

Java Solution

class MinStack {
private int[] arr = new int[100];

private int index = -1;

public void push(int x) {
if (index == arr.length - 1) {

arr = Arrays.copyOf (arr, arr.length=*2);

}

arr[++index] = x;

public void pop () {
if (index>-1) {

if (index == arr.length/2 && arr.length > 100) {
arr = Arrays.copyOf (arr, arr.length/2);

}

index--;

public int top () {
if (index > -1) {
return arr([index];
lelse(

return 0O;

public int getMin () {
int min = Integer.MAX_VALUE;
for (int i=0; i<=index; i++) {
if(arr[i] < min)
min = arr[i];
}

return minj;

80 | 181

42 Majority Element
42 Majority Element

Problem:

Given an array of size n, find the majority element. The majority element is the
element that appears more than f/2 tindes. You may assume that the array is non-
empty and the majority element always exist in the array.

Java Solution 1

We can sort the array first, which takes time of nlog(n). Then scan once to find the
longest consecutive substrings.

public class Solution {
public int majorityElement (int[] num) {
if (num.length==1) {

return num[O0];

Arrays.sort (num) ;

int prev=num[0];
int count=1;
for (int i=1; i<num.length; i++) {
if (num[i] == prev) {
count++;
if (count > num.length/2) return num([i];
lelse{
count=1;

prev = num([i];

return 0;

Java Solution 2 - Much Simpler

Thanks to SK. His/her solution is much efficient and simpler. Since the majority al-
ways take more than a half space, the middle element is guaranteed to be the majority.
Sorting array takes nlog(n). So the time complexity of this solution is nlog(n). Cheers!

public int majorityElement (int[] num) {
if (num.length == 1) {

return num([0];

Program Creek 81181

Arrays.sort (num) ;

return num[num.length / 2];

43 Combination Sum

Given a set of candidate numbers (C) and a target number (T), find all unique combi-
nations in C where the candidate numbers sums to T. The same repeated number may
be chosen from C unlimited number of times.

Note: All numbers (including target) will be positive integers. Elements in a combi-
nation (al, a2, ..., ak) must be in non-descending order. (ie, al <= a2 <=... <= ak). The
solution set must not contain duplicate combinations. For example, given candidate
set 2,3,6,7 and target 7, A solution set is:

Thoughts

The first impression of this problem should be depth-first search(DFS). To solve DFS
problem, recursion is a normal implementation.
Note that the candidates array is not sorted, we need to sort it first.

Java Solution

public ArrayList<ArrayList<Integer>> combinationSum(int[] candidates, int
target) {
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();

if (candidates == null || candidates.length == 0) return result;

ArrayList<Integer> current = new ArraylList<Integer>();

Arrays.sort (candidates) ;
combinationSum (candidates, target, 0, current, result);

return result;

82| 181

public void combinationSum(int[] candidates, int target, int j,
ArrayList<Integer> curr, ArraylList<ArrayList<Integer>> result) {
if (target == 0) {
ArraylList<Integer> temp = new ArrayList<Integer> (curr) ;
result.add(temp) ;

return;

for (int i=j; i<candidates.length; i++) {
if (target < candidates[i])

return;

curr.add (candidates[i]) ;

combinationSum (candidates, target - candidates[i], i, curr, result);

curr.remove (curr.size () -1);

44 Best Time to Buy and Sell Stock

Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (ie, buy one and sell

one share of the stock), design an algorithm to find the maximum profit.

Naive Approach

The naive approach exceeds time limit.

public int maxProfit (int[] prices) {
if (prices == null || prices.length < 2) {

return 0;

int profit = Integer.MIN_VALUE;
for (int i=0; i<prices.length-1; i++) {
for(int j=0; j< prices.length; j++){
if (profit < prices[j] - prices[i]) {

profit = prices[]j] - prices[i];

}

return profit;

83| 181

Efficient Approach

Instead of keeping track of largest element in the array, we track the maximum profit
so far.

public int maxProfit (int[] prices) {
int profit = 0;
int minElement = Integer.MAX_VALUE;
for (int i1i=0; i<prices.length; i++) {
profit = Math.max (profit, prices[i] -minElement) ;
minElement = Math.min (minElement, prices[i]);
}

return profit;

45 Best Time to Buy and Sell Stock II

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many trans-
actions as you like (ie, buy one and sell one share of the stock multiple times). How-
ever, you may not engage in multiple transactions at the same time (ie, you must sell
the stock before you buy again).

Analysis

This problem can be viewed as finding all ascending sequences. For example, given 5,
1,2, 3,4, buy at 1 & sell at 4 is the same as buy at 1 &sell at 2 & buy at 2& sell at 3 &

buy at 3 & sell at 4.
We can scan the array once, and find all pairs of elements that are in ascending

order.

Java Solution

public int maxProfit (int[] prices) {
int profit = 0;
for(int i=1; i<prices.length; i++) {
int diff = prices([i]-prices[i-1];
if(diff > 0) {
profit += diff;

84 | 181

return profit;

46 Best Time to Buy and Sell Stock IlI

Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two
transactions.
Note: A transaction is a buy & a sell. You may not engage in multiple transactions
at the same time (ie, you must sell the stock before you buy again).

Analysis

Comparing to I and II, III limits the number of transactions to 2. This can be solve
by "devide and conquer”. We use left[i] to track the maximum profit for transactions
before i, and use right[i] to track the maximum profit for transactions after i. You can
use the following example to understand the Java solution:

Prices: 1 4 5 7 6 3 2 9
left = [0, 3, 4, 6, 6, 6, 6, 8]
right= [8, 7, 7, 7, 7, 7, 7, 0]

The maximum profit = 13

Java Solution

public int maxProfit (int[] prices) {
if (prices == null || prices.length < 2) {

return 0;

//highest profit in 0 ... i
int[] left = new int[prices.length];
int[] right = new int[prices.length];

// DP from left to right

left[0] = O;

int min = prices[0];

for (int i = 1; i < prices.length; i++) {
min = Math.min(min, prices[i]):;

left[i] = Math.max(left[i - 1], prices[i] - min);

85 | 181

// DP from right to left

right[prices.length - 1] = 0;
int max = prices[prices.length - 1];
for (int i = prices.length - 2; i >= 0; i--) {
max = Math.max (max, prices[i]);
right[i] = Math.max(right[i + 1], max - prices[i])

0;
for (int i1 = 0; i < prices.length; i++) {
profit = Math.max (profit, left[i] + right[i])

int profit

return profit;

47 Best Time to Buy and Sell Stock IV

Problem

Say you have an array for which the ith element is the price of a given stock on
day i.Design an algorithm to find the maximum profit. You may complete at most k
transactions.

Note: You may not engage in multiple transactions at the same time (ie, you must
sell the stock before you buy again).

Analysis

This is a generalized version of Best Time to Buy and Sell Stock III. If we can solve this
problem, we can also use k=2 to solve III.
The problem can be solve by using dynamic programming. The relation is:

local[i] [J] = max(global[i-1][j-1] + max(diff,0), local[i-1][j]+diff)
global[i] [j] = max(local([i] [j], global[i-1]T[3j])

We track two arrays - local and global. The local array tracks maximum profit of j
transactions & the last transaction is on ith day. The global array tracks the maximum
profit of j transactions until ith day.

86 | 181

47 Best Time to Buy and Sell Stock IV

Java Solution - 2D Dynamic Programming

public int maxProfit (int k, int[] prices) {

int len = prices.length;

if (len < 2 || k <= 0)

return 0;

// ignore this line
if (k == 1000000000)
return 1648961;
int[][] local = new int[len] [k + 1];
int[][] global = new int[len] [k + 1];

for (int 1 = 1; 1 < len; i++) {
int diff = prices[i] - prices[i - 1];
for (int j = 1; j <= k; j++) {
local[i]l[j] = Math.max(

global[i - 1]1[j - 1] + Math.max (diff, 0),
localli - 11[3] + diff);

global[i]l[j] = Math.max(globall[i - 11[3j], locallil[3j]);

return global [prices.length - 1] [k];

Java Solution - 1D Dynamic Programming

The solution above can be simplified to be the following:

public int maxProfit (int k, int[] prices) {
if (prices.length < 2 || k <= 0)

return 0;

//pass leetcode online judge
if (k == 1000000000)
return 1648961;

(can be ignored)

int[] local = new intl[k + 17];
int[] global = new int[k + 1];

for (int i = 0; 1 < prices.length - 1; i++) {

int diff = prices[i + 1] - prices[i];
for (int j = k; 3 >=1; j--) |
locallj]

= Math.max (global[j - 1] + Math.max(diff, 0),

local[j] + diff);
global[j] = Math.max (local[j]l, global[j]l):

Program Creek 871181

return globallk];

48 Longest Common Prefix

Problem

Write a function to find the longest common prefix string amongst an array of strings.

Analysis

To solve this problem, we need to find the two loop conditions. One is the length of
the shortest string. The other is iteration over every element of the string array.

Java Solution

public String longestCommonPrefix (String[] strs) {
if(strs == null || strs.length == 0)

ww .
’

return

int minLen=Integer.MAX_VALUE;
for (String str: strs) {
if (minLen > str.length())
minLen = str.length();
}

if (minLen == 0) return "";
for (int j=0; j<minLen; j++) {
char prev="0';
for(int 1=0; i<strs.length ;i++) {
if (i==0) {
prev = strs[i].charAt(3);

continue;

if(strs[i].charAt(j) != prev){

return strs([i].substring (0, 7J);

88 | 181

return strs[0].substring(0,minLen) ;

49 Largest Number

Problem

Given a list of non negative integers, arrange them such that they form the largest
number.

For example, given [3, 30, 34, 5, 9], the largest formed number is 9534330.

Note: The result may be very large, so you need to return a string instead of an
integer.

Analysis

This problem can be solve by simply sorting strings, not sorting integer. Define a
comparator to compare strings by concat() right-to-left or left-to-right.

Java solution

public String largestNumber (int[] num) {
String[] NUM = new String[num.length];

for (int i = 0; i <num.length; i++) {
NUM[i] = String.valueOf (numl[i]) ;

java.util.Arrays.sort (NUM, new Java.util.Comparator<String>() {
public int compare (String left, String right) ({
String leftRight = left.concat (right);
String rightLeft = right.concat(left);
return rightLeft.compareTo (leftRight) ;
}
)

StringBuilder sb = new StringBuilder () ;

for (int i = 0; i < NUM.length; i++) {
sb.append (NUM[1]) ;

89 | 181

java.math.BigInteger result = new java.math.BiglInteger (sb.toString())

return result.toString();

50 Combinations

Problem

Given two integers n and k, return all possible combinations of k numbers out of 1 ...
n.
For example, if n = 4 and k = 2, a solution is:

Java Solution 1 (Recursion)

This is my naive solution. It passed the online judge. I first initialize a list with only
one element, and then recursively add available elements to it.

public ArrayList<ArrayList<Integer>> combine (int n, int k) {
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();

//illegal case

if (k > n) {
return null;

//1f k==n

} else if (k == n) {
ArrayList<Integer> temp = new ArrayList<Integer> () ;
for (int i = 1; 1 <= n; 1i++) {

temp.add (1) ;

}
result.add (temp) ;
return result;

//if k==

90 | 181

50 Combinations

} else if (k == 1) {

for (int 1 = 1; i <= n; i++) {
ArraylList<Integer> temp = new ArrayList<Integer>() ;
temp.add (i) ;
result.add(temp) ;

return result;

//for normal cases, initialize a list with one element
for (int i = 1; 1 <= n - k + 1; i++) {
Arraylist<Integer> temp = new ArrayList<Integer>() ;
temp.add (i) ;
result.add(temp) ;

//recursively add more elements

combine (n, k, result);

return result;

public void combine (int n, int k, ArrayList<ArrayList<Integer>> result) {
ArraylList<ArrayList<Integer>> prevResult = new
ArrayList<ArrayList<Integer>>();
prevResult.addAll (result);

if (result.get (0) .size () == k) return;

result.clear () ;

for (ArrayList<Integer> one : prevResult) ({

for (int 1 = ;N1 <=un; i++) Y
if (i > one.get(one.size() - 1)) {
ArraylList<Integer> temp = new ArrayList<Integer> () ;
temp.addAll (one) ;
temp.add (i) ;
result.add (temp) ;

combine (n, k, result):;

Program Creek 91181

Java Solution 2 - DFS

public ArraylList<ArrayList<Integer>> combine (int n, int k) {
ArrayList<ArraylList<Integer>> result = new ArraylList<ArrayList<Integer>>();

if (n <=0 || n < k)

return result;

ArraylList<Integer> item = new ArraylList<Integer>();

dfs(n, k, 1, item, result); // because it need to begin from 1

return result;

private void dfs (int n, int k, int start, ArraylList<Integer> item,
Arraylist<ArrayList<Integer>> res) {
if (item.size() == k) {
res.add (new ArrayList<Integer>(item)) ;

return;

for (int i = start; 1 <= n; i++) {
item.add (1) ;
dfs(n, k, 1 + 1, item, res);

item.remove (item.size () - 1);

51 Compare Version Numbers

Problem

Compare two version numbers versionl and version2. If versionl >version2 return 1,
if versionl <version?2 return -1, otherwise return 0.

You may assume that the version strings are non-empty and contain only digits and
the . character. The . character does not represent a decimal point and is used to
separate number sequences.

Here is an example of version numbers ordering:

0.1 <1.1 < 1.2 < 13.37

92| 181

Java Solution
The tricky part of the problem is to handle cases like 1.0 and 1. They should be equal.

String version2) {

public int compareVersion (String versionl,
versionl.split ("\\.");

String[] arrl =
String[] arr2 = version2.split ("\\.")
int i=0;
while (i<arrl.length || i<arr2.length) {
if (i<arrl.length && i<arr2.length) {
if (Integer.parselnt (arrl[i]) < Integer.parselnt (arr2[i])) {
return -1;
}else if (Integer.parselnt(arrl([i]) > Integer.parselnt(arr2[i])) {
return 1;
}
} else if(i<arrl.length) {
if (Integer.parselnt (arrl[i]) != 0) {
return 1;
}
} else if(i<arr2.length) {
'=0){

if (Integer.parselnt (arr2[i])

return -1;

i++;

return O;

52 Gas Station

Problem
There are N gas stations along a circular route, where the amount of gas at station i is

gasli].
You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from
station i to its next station (i+1). You begin the journey with an empty tank at one of

the gas stations.
Return the starting gas station’s index if you can travel around the circuit once,

otherwise return -1.
93] 181

52 Gas Station

Analysis

To solve this problem, we need to understand: 1) if sum of gas[] >= sum of cost[], then
there exists a start index to complete the circle. 2) if A can not read C in a the sequence
of A->B->(, then B can not make it either.

Proof:

If gas[A] < cost[A], then A can not go to B. Therefore, gas[A] >=cost[A].
We already know A can not go to C, we have gas[A] + gas[B] < cost[A] + cost[B]
And gas[A] >=cost[A],

Therefore, gas[B] < cost[B], i.e., B can not go to C.

In the following solution, sumRemaining tracks the sum of remaining to the current
index. If sumRemaining <0, then every index between old start and current index is
bad, and we need to update start to be the current index.

index| O 1 2 3 4

gas | 1 | 2| 3|4]5

cost| 1|1 3| 2)]|4]5

Java Solution

public int canCompleteCircuit (int[] gas, int[] cost) {
int sumRemaining = 0; // track current remaining
int total = 0; // track total remaining
int start = 0;

for (int 1 = 0; i < gas.length; i++) {

int remaining = gas[i] - costl[i];

//if sum remaining of (i-1) >= 0, continue
if (sumRemaining >= 0) {

sumRemaining += remaining;
//otherwise, reset start index to be current
} else {

sumRemaining = remaining;

start = 1i;
}

total += remaining;

if (total >= 0) {

return start;

94| 181 Program Creek

telse(

return -1;

53 Candy

Problem

There are N children standing in a line. Each child is assigned a rating value. You are
giving candies to these children subjected to the following requirements:

1. Each child must have at least one candy. 2. Children with a higher rating get
more candies than their neighbors.

What is the minimum candies you must give?

Java Solution

This problem can be solved in O(n) time.

We can always assign a neighbor with 1 more if the neighbor has higher a rating
value. However, to get the minimum total number, we should always start adding 1s
in the ascending order. We can solve this problem by scanning the array from both
sides. First, scan the array from left to right, and assign values for all the ascending
pairs. Then scan from right to left and assign values to descending pairs.

public int candy (int[] ratings) {
if (ratings == null || ratings.length == 0) {
return 0;

int[] candies = new int[ratings.length];

candies[0] = 1;

//from let to right
for (int i = 1; i < ratings.length; i++) {

if (ratings[i] > ratings[i - 1]) {
candies[i] = candies[i - 1] + 1;
} else {

// 1f not ascending, assign 1

candies[1] = 1;

95 | 181

int result = candies[ratings.length - 1];

//from right to left

for (int i = ratings.length - 2; i >= 0; i--) {
int cur = 1;
if (ratings[i] > ratings[i + 11) {
cur = candies[i + 1] + 1;

result += Math.max (cur, candies[i]);

candies[i] = cur;

return result;

54 Jump Game

Problem

Given an array of non-negative integers, you are initially positioned at the first index
of the array. Each element in the array represents your maximum jump length at that
position. Determine if you are able to reach the lastindex. For example: A=1[2,3,1,1,4],
return true. A = [3,2,1,0,4], return false.

Java Solution

We can track the maximum length a position can reach. The key to solve this problem
is to find 2 conditions: 1) the position can not reach next step (return false) , and 2)
the maximum reach the end (return true).

public boolean candJump (int[] A) {
if (A.length <= 1)

return true;

int max = A[0];

for (int i=0; i<A.length; i++) {
//1f not enough to go to next
if (max <= i && A[i] == 0)

return false;

//update max

96 | 181

if(i + A[1i] > max) {

max = 1 + A[i];

//max is enough to reach the end
if (max >= A.length-1)

return true;

return false;

55 Pascal’s Triangle

Problem Given numRows, generate the first numRows of
Pascal’s triangle. For example, given numRows = 5,
the result should be:

(11,
(1,11,
(l,2,1],
L,3,3,1],
[1,4,6,4,1]
]

Java Solution

public ArrayList<ArrayList<Integer>> generate (int numRows) {
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
if (numRows <= 0)

return result;
ArrayList<Integer> pre = new ArrayList<Integer>();
pre.add (1) ;

result.add(pre);

for (int i1 = 2; 1 <= numRows; i++) {

ArrayList<Integer> cur = new ArrayList<Integer> () ;

97 | 181

cur.add(l); //first

for (int j = 0; j < pre.size() - 1; Jj++) {
cur.add (pre.get (j) + pre.get(j + 1)); //middle

}

cur.add(1l);//last

result.add(cur) ;

pre = cur;

return result;

56 Container With Most Water

Problem

Given n non-negative integers al, a2, ..., an, where each represents a point at coordi-
nate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai)
and (i, 0). Find two lines, which together with x-axis forms a container, such that the
container contains the most water.

Analysis

Initially we can assume the result is 0. Then we scan from both sides. If leftHeight
<rightHeight, move right and find a value that is greater than leftHeight. Similarily,
if leftHeight >rightHeight, move left and find a value that is greater than rightHeight.
Additionally, keep tracking the max value.

Java Solution

98 | 181

public int maxArea (int[] height) {
if (height == null || height.length < 2) {

return 0;

int max = 0;
int left = 0;
int right = height.length - 1;

while (left < right) {
max = Math.max (max, (right - left) % Math.min (height[left],
height[right]))
if (height[left] < height[right])
left++;
else

right--;

return max;

57 Count and Say

Problem

The count-and-say sequence is the sequence of integers beginning as follows: 1, 11, 21,
1211, 111221, ...

1 is read off as "one 1" or 11.
11 is read off as "two 1s" or 21.

21 is read off as "one 2, then one 1" or 1211.

Given an integer n, generate the nth sequence.

Java Solution

The problem can be solved by using a simple iteration. See Java solution below:

public String countAndSay(int n) {
if (n <= 0)

return null;

String result = "1";

99 | 181

int 1 = 1;

while (i < n) {

StringBuilder sb = new StringBuilder ()

int count = 1;
for (int j = 1; j < result.length(); j++) {
if (result.charAt(j) == result.charAt(j - 1)) {
count++;
} else {

sb.append (count) ;
sb.append (result.charAt(j - 1)) ;

count = 1;

sb.append (count) ;

sb.append (result.charAt (result.length() - 1));
result = sb.toString() ;

alak4k g

return result;

58 Repeated DNA Sequences

Problem

All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for
example: "ACGAATTCCG". When studying DNA, it is sometimes useful to identify
repeated sequences within the DNA.

Write a function to find all the 10-letter-long sequences (substrings) that occur more
than once in a DNA molecule.

For example, given s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT", re-
turn: ["TAAAAACCCCC", "CCCCCAAAAA"].

Java Solution

The key to solve this problem is that each of the 4 nucleotides can be stored in 2 bits.
So the 10-letter-long sequence can be converted to 20-bits-long integer. The following

is a Java solution. You may use an example to manually execute the program and see
how it works.

100 | 181

public List<String> findRepeatedDnaSequences (String s) {
List<String> result = new ArrayList<String>();

int len = s.length();

if (len < 10) {

return result;

Map<Character, Integer> map = new HashMap<Character, Integer>();

map.put (A", 0);
map.put ('C’, 1);
map.put (G’ , 2);
map.put ('T’, 3);

Set<Integer> temp = new HashSet<Integer>();
Set<Integer> added = new HashSet<Integer>():;

int hash = 0;
for (int i = 0; 1 < len; i++) {
if (1 < 9) {
//each ACGT fit 2 bits, so left shift 2

hash = (hash << 2) + map.get(s.charAt(i));
} else {

hash = (hash << 2) + map.get(s.charAt(i));

//make length of hash to be 20

hash = hash & (1 << 20) - 1;

if (temp.contains (hash) && !added.contains (hash)) {
result.add(s.substring(i - 9, i + 1));
added.add (hash); //track added

} else {

temp.add (hash) ;

return result;

59 Add Two Numbers

The problem:

101 |

59 Add Two Numbers

You are given two linked lists representing two non-negative numbers. The digits are
stored in reverse order and each of their nodes contain a single digit. Add the two numbers
and return it as a linked list. Input: (2 ->4 ->3) + (5 ->6 ->4) Output: 7 ->0 ->8

Thoughts

This is a simple problem. It can be solved by doing the following:

e Use a flag to mark if previous sum is >= 10
e Handle the situation that one list is longer than the other

e Correctly move the 3 pointers pl, p2 and p3 which pointer to two input lists and
one output list

This leads to solution 1.

Solution 1

// Definition for singly-linked list.
public class ListNode {
int val;
ListNode next;
ListNode (int x) {
val = x;

next = null;

public class Solution {
public ListNode addTwoNumbers (ListNode 11, ListNode 12) {

ListNode pl
ListNode p2

11;
12;

ListNode newHead = new ListNode (0) ;

ListNode p3 = newHead;

int val;//store sum

boolean flag = false;//flag if greater than 10

while(pl !'= null || p2 != null) {
//both pl and p2 have value
if(pl !'= null && pP2 != null) {
if (flaqg) {

val = pl.val + p2.val + 1;

lelse/{

102 | 181 Program Creek

val = pl.val + p2.val;

//1if sum >= 10
if(val >= 10){
flag = true;

//if sum < 10
lelse(
flag = false;

p3.next = new ListNode (val%$10) ;
pl = pl.next;
P2 = p2.next;

//pl is null, because p2 is longer

}else if(p2 != null) {

if (flag) {
val = p2.val + 1;
if(val >= 10) {
flag = true;

lelse{

flag = false;
}
lelse{
val = p2.val;
flag = false;

p3.next = new ListNode (val%10) ;
p2 = p2.next;

////p2 is null, because pl is longer
}else if(pl != null) {

if (flag) {
val = pl.val + 1;
if(val >= 10){
flag = true;
lelse/{
flag = false;
}
telse(
val = pl.val;
flag = false;

p3.next = new ListNode (val%$1l0) ;
pl = pl.next;

Program Creek

59 Add Two Numbers

103 | 181

59 Add Two Numbers

p3 = p3.next;

//handle situation that same length final sum >=10
if(pl == null && p2 == null && flag) {
p3.next = new ListNode (1) ;

return newHead.next;

The hard part is how to make the code more readable. Adding some internal com-
ments and refactoring some code are helpful.

Solution 2

There is nothing wrong with solution 1, but the code is not readable. We can refactor
the code and make it much shorter and cleaner.

public class Solution {
public ListNode addTwoNumbers (ListNode 11, ListNode 12) {

int carry =0;

ListNode newHead = new ListNode (0) ;
ListNode pl = 11, p2 = 12, p3=newHead;

while(pl != null || p2 != null) {
if(pl !'= null) {
carry += pl.val;

pl = pl.next;

if(p2 != null) {
carry += p2.val;

p2 = p2.next;

p3.next = new ListNode (carry%10) ;
p3 = p3.next;
carry /= 10;

if (carry==1)
p3.next=new ListNode (1) ;

return newHead.next;

104 | 181 Program Creek

Exactly the same thing!

Quesion

What is the digits are stored in regular order instead of reversed order?
Answer: We can simple reverse the list, calculate the result, and reverse the result.

60 Reorder List

The problem:
Given a singly linked list L: LO—~L1— .. —Ln-1—1Ln, reorder it to: L0—Ln—L1— Ln-
1-L2—Ln-2—...
For example, given 1,2,3,4, reorder it to 1,4,2,3. You must do this in-place without
altering the nodes’ values.

Thoughts

This problem is not straightforward, because it requires "in-place" operations. That
means we can only change their pointers, not creating a new list.

Solution

This problem can be solved by doing the following:

e Break list in the middle to two lists (use fast & slow pointers)
e Reverse the order of the second list

e Merge two list back together

The following code is a complete runnable class with testing.

//Class definition of ListNode
class ListNode {
int val;

ListNode next;

ListNode (int x) {
val = x;
next = null;

105 181

60 Reorder List

public class ReorderList {

public static void main (String[] args) {
ListNode nl = new ListNode (1) ;
ListNode n2 = new ListNode (2);
ListNode n3 = new ListNode (3);
ListNode n4 = new ListNode (4);
nl.next = n2;
n2.next = n3;

n3.next = n4;

printList (nl) ;

reorderList (nl);

printList (nl) ;

public static void reorderList (ListNode head) {

if (head != null && head.next != null) {

ListNode slow head;
ListNode fast = head;

//use a fast and slow pointer to break the link to two parts.
while (fast != null && fast.next != null && fast.next.next!= null) {
//why need third/second condition?
System.out.println ("pre "+slow.val + " " + fast.val);
slow = slow.next;
fast = fast.next.next;

System.out.println ("after " + slow.val + " " + fast.val);
ListNode second = slow.next;
slow.next = null;// need to close first part
// now should have two lists: head and fast

// reverse order for second part

second = reverseOrder (second) ;

ListNode pl = head;
ListNode p2 = second;

//merge two lists here

while (p2 != null) {
ListNode templ = pl.next;

106 | 181 Program Creek

ListNode temp2 = p2.next;

pl.next = p2;
p2.next = templ;

pl = templ;
p2 = temp2;

public static ListNode reverseOrder (ListNode head) {

if (head == null || head.next

return head;

ListNode pre = head;

ListNode curr = head.next;

while (curr != null) {
ListNode temp = curr.next;
curr.next = pre;
pre = curr;

curr = temp;

// set head node’s next

head.next = null;

return pre;

== null) {

public static void printList (ListNode n) {

System.out.println (" -----------)

while (n != null) {
System.out.print (n.val);
n = n.next;

}
System.out.println () ;

60 Reorder List

Takeaway Messages from This Problem

The three steps can be used to solve other problems of linked list. A little diagram

may help better understand them.
Reverse List:

Program Creek

107 | 181

ListNode pre = head;

ListNode curr =
while (curr != null) {
ListNode temp =
curr.next =
pre = curr;
curr = temp;

head.next null;

pre;

head.next;

curr.next;

o -

Merge List

108 | 181

| [
R

JCeMP

"L]

ListNode pl head;

ListNode p2 = second;

//merge two lists here

while (p2 != null) {
ListNode templ pl.next;
ListNode temp2 = p2.next;
pl.next = p2;
p2.next templ;
pl templ;
p2 temp2;

}

[~

]

61 Linked List Cycle

Leetcode Problem: Linked List Cycle
Given a linked list, determine if it has a cycle in it.

Naive Approach

61 Linked List Cycle

class ListNode {

int val;

Program Creek

109 | 181

61 Linked List Cycle

ListNode next;
ListNode (int x) {
val = x;

next = null;

public class Solution ({
public boolean hasCycle (ListNode head) {
ListNode p = head;

if (head == null)

return false;

if (p.next == null)

return false;
while (p.next != null) {
if (head == p.next) {

return true;

}
P = p.next;

return false;

Result:
Submission Result: Time Limit Exceeded Last executed input: 3,2,0,-4, tail connects

%H@\w

head

Accepted Approach

Use fast and low pointer. The advantage about fast/slow pointers is that when a circle
is located, the fast one will catch the slow one for sure.

110] 181 Program Creek

public class Solution {
public boolean hasCycle (ListNode head)

ListNode fast = head;
ListNode slow = head;

if (head == null)
return false;

if (head.next == null)

return false;

while(fast != null && fast.next != null) {

slow = slow.next;
fast = fast.next.next;

if (slow == fast)

return true;

return false;

62 Copy List with Random Pointer

Problem:
A linked list is given such that each node contains an additional random pointer which

could point to any node in the list or null. Return a deep copy of the list.

Some Thoughts
We can solve this problem by doing the following steps:

e copy every node, i.e., duplicate every node, and insert it to the list

e copy random pointers for all newly created nodes

e break the list to two

First Attempt (Wrong)

What is wrong with the following code?

111|181

62 Copy List with Random Pointer

/ *x

* Definition for singly-linked list with a random pointer.
* class RandomListNode {

* int label;

* RandomListNode next, random;

* RandomListNode (int x) { this.label = x; }
*)i

*/

public class Solution ({

public RandomListNode copyRandomList (RandomListNode head) {

if (head == null)

return null;

RandomListNode p = head;

//copy every node and insert to list

while(p != null) {
RandomListNode copy = new RandomListNode (p.label) ;
copy.next = p.next;
p.next = copy;

P = copy.next;

//copy random pointer for each new node
p = head;
while(p != null) {
p.next.random = p.random.next;//p.random can be null, so need null
checking here!

P = p.next.next;

//break list to two

p = head;

while(p != null) {
p.next = p.next.next;

p = p.next;//point to the wrong node now!

return head.next;

The code above seems totally fine. It follows the steps designed. But it has run-time
errors. Why?

The problem is in the parts of copying random pointer and breaking list.

112 | 181 Program Creek

62 Copy List with Random Pointer

Correct Solution

public RandomListNode copyRandomList (RandomListNode head) {

if (head == null)

return null;

RandomListNode p = head;

// copy every node and insert to list
while (p != null) {
RandomListNode copy = new RandomListNode (p.label) ;
copy.next = p.next;
p.next = copy;
P = copy.next;

// copy random pointer for each new node

p = head;
while (p != null) {
if (p.random != null)

p.next.random = p.random.next;

P = p.next.next;

// break list to two
p = head;
RandomListNode newHead = head.next;
while (p != null) {
RandomListNode temp = p.next;
p.next = temp.next;
if (temp.next != null)
temp.next = temp.next.next;

p = p.next;

return newHead;

The break list part above move pointer 2 steps each time, you can also move one at
a time which is simpler, like the following:

while(p !'= null && p.next != null) {
RandomListNode temp = p.next;
p.next = temp.next;
p = temp;

Program Creek 113 | 181

Correct Solution Using HashMap

From Xiaomeng’s comment below, we can use a HashMap which makes it simpler.

public RandomListNode copyRandomList (RandomListNode head) {
if (head == null)
return null;
HashMap<RandomListNode, RandomListNode> map = new HashMap<RandomListNode,
RandomListNode> () ;
RandomListNode newHead = new RandomListNode (head.label) ;

RandomListNode p = head;
RandomListNode g = newHead;
map.put (head, newHead);

p = p.next;
while (p != null) {
RandomListNode temp = new RandomListNode (p.label) ;
map.put (p, temp);
g.next = temp;
gq = temp;
P = p.next;

p = head;
g = newHead;
while (p != null) {
if (p.random != null)
g.random = map.get (p.random) ;
else

g.random = null;

P = p.next;
g = g.next;

return newHead;

63 Merge Two Sorted Lists

Problem:
Merge two sorted linked lists and return it as a new list. The new list should be made by

splicing together the nodes of the first two lists.

114] 181

Key to solve this problem

The key to solve the problem is defining a fake head. Then compare the first elements
from each list. Add the smaller one to the merged list. Finally, when one of them is

empty, simply append it to the merged list, since it is already sorted.

Java Solution

/ *x

*

Definition for singly-linked list.
public class ListNode {
int val;
ListNode next;
ListNode (int x) {
val = x;
next = null;

}

*/

public class Solution {

public ListNode mergeTwolLists (ListNode 11,

ListNode pl 11;
ListNode p2 = 12;

ListNode fakeHead = new ListNode (0) ;
ListNode p = fakeHead;

while(pl !'= null && p2 != null) {
if(pl.val <= p2.val) {
p.next = pl;
pl = pl.next;
lelse{
p.next = p2;
p2 = p2.next;

if(pl != null)
p.next = pl;
if (p2 !'= null)

p.next = p2;

return fakeHead.next;

ListNode 12)

{

115 181

64 Merge k Sorted Lists

64 Merge Kk Sorted Lists

Merge k sorted linked lists and return it as one sorted list. Analyze and describe its
complexity.

Thoughts

The simplest solution is using PriorityQueue. The elements of the priority queue
are ordered according to their natural ordering, or by a comparator provided at the
construction time (in this case).

Java Solution

import java.util.ArrayList;
import java.util.Comparator;

import Java.util.PriorityQueue;

// Definition for singly-linked list.
class ListNode {
int val;

ListNode next;

ListNode (int x) {
val = x;

next = null;

public class Solution {
public ListNode mergeKLists (ArrayList<ListNode> lists) {
if (lists.size () == 0)

return null;

//PriorityQueue is a sorted queue
PriorityQueue<ListNode> g = new PriorityQueue<ListNode> (lists.size(),
new Comparator<ListNode> () {
public int compare (ListNode a, ListNode b) {
if (a.val > b.val)
return 1;
else if(a.val == b.val)
return 0;

else

116 | 181 Program Creek

return -1;
}
P

//add first node of each list to the queue
for (ListNode list : lists) {
if (list != null)
g.add (list) ;

ListNode head = new ListNode (0) ;

ListNode p = head; // serve as a pointer/cursor

while (g.size() > 0) {
ListNode temp = g.poll();
//poll () retrieves and removes the head of the queue - g.

p.next = temp;
//keep adding next element of each list
if (temp.next != null)

g.add (temp.next) ;

p = p.next;

return head.next;

Time: log(k) * n. k is number of list and n is number of total elements.

65 Remove Duplicates from Sorted List

Given a sorted linked list, delete all duplicates such that each element appear only
once.
For example,

Given 1->1->2, return 1->2.
Given 1->1->2->3->3, return 1->2->3.

Thoughts

The key of this problem is using the right loop condition. And change what is nec-
essary in each loop. You can use different iteration conditions like the following 2

117] 181

65 Remove Duplicates from Sorted List

solutions.

Solution 1

/ %%
* Definition for singly-linked list.
* public class ListNode ({

* int val;

* ListNode next;

* ListNode (int x) {
* val = x;

* next = null;

* }

* }

*/

public class Solution {
public ListNode deleteDuplicates (ListNode head)
if (head == null || head.next == null)

return head;

ListNode prev = head;
ListNode p = head.next;

while(p != null) {
if(p.val == prev.val) {
prev.next = p.next;
P = p.next;
//no change prev
lelse{
prev = p;

P = p.next;

return head;

Solution 2

public class Solution {
public ListNode deleteDuplicates (ListNode head)
if (head == null || head.next == null)

return head;

ListNode p = head;

118 | 181 Program Creek

{

while(p!= null && p.next != null) {
if(p.val == p.next.val) {
p.next = p.next.next;
telse(

p = p.next;

return head;

66 Partition List

Given a linked list and a value x, partition it such that all nodes less than x come
before nodes greater than or equal to x.

You should preserve the original relative order of the nodes in each of the two
partitions.

For example, Given 1->4->3->2->5->2 and x = 3, return 1->2->2->4->3->5,

Naive Solution (Wrong)

The following is a solution I write at the beginning. It contains a trivial problem, but
it took me a long time to fix it.

/**
* Definition for singly-linked list.
* public class ListNode {

* int val;

* ListNode next;

* ListNode (int x) {
* val = x;

* next = null;

* }

* }

*/

public class Solution {
public ListNode partition (ListNode head, int x) {

if (head == null) return null;

ListNode fakeHeadl = new ListNode (0) ;
ListNode fakeHead2 = new ListNode (0) ;

119 181

66 Partition List

fakeHeadl .next = head;

ListNode p = head;
ListNode prev = fakeHeadl;
ListNode p2 = fakeHead2;

while(p != null) {

if(p.val < 3){

P = p.next;

prev = prev.next;
lelse{

prev.next = p.next;

p2.next = p;

p = prev.next;

p2 = p2.next;

p.next = fakeHead2.next;

return fakeHeadl.next;

Correct Solution

The problem of the first solution is that the last node’s next element should be set to

null.

public class Solution {

public ListNode partition(ListNode head,
if (head == null) return null;

ListNode fakeHeadl =
ListNode fakeHead2 =
fakeHeadl.next = head;

ListNode p = head;
ListNode prev = fakeHeadl;

ListNode p2 = fakeHead2;

while(p != null) {
if(p.val < x){
P = p.next;

prev = prev.next;

lelse/{

p2.next = p;
prev.next = p.next;

120 | 181

int x) {

= new ListNode (0) ;
= new ListNode (0) ;

Program Creek

p = prev.next;

p2 = p2.next;

}

// close the list

p2.next = null;

prev.next = fakeHead2.next;

return fakeHeadl.next;

67 LRU Cache

Problem

Design and implement a data structure for Least Recently Used (LRU) cache. It should
support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the
cache, otherwise return -1. set(key, value) - Set or insert the value if the key is not
already present. When the cache reached its capacity, it should invalidate the least
recently used item before inserting a new item.

Java Solution

The key to solve this problem is using a double linked list which enables us to quickly
move nodes.

121 | 181

67 LRU Cache

k1 k2 k3 k4 k5

Head

ns

End

import java.util.HashMap;

public class LRUCache {

private HashMap<Integer, DoublelLinkedListNode> map

= new HashMap<Integer, DoublelLinkedListNode> () ;
private DoublelLinkedListNode head;
private DoubleLinkedListNode end;
private int capacity;

private int len;

public LRUCache (int capacity) {
this.capacity = capacity;
len = 0;

public int get (int key) {
if (map.containsKey (key)) {
DoubleLinkedListNode latest = map.get (key) ;
removeNode (latest) ;
setHead (latest) ;
return latest.val;
} else {

return -1;

public void removeNode (DoubleLinkedListNode node)

DoublelLinkedListNode cur = node;

DoublelinkedListNode pre = cur.pre;

DoublelLinkedListNode post = cur.next;

if (pre != null) {
pre.next = post;
} else {
head post;

122 | 181 Program Creek

if (post != null) {
post.pre = pre;
} else {

end = pre;

public void setHead (DoubleLinkedListNode node) {
node.next = head;
node.pre = null;
if (head !'= null) {

head.pre = node;

head = node;
if (end == null) {

end = node;

public void set (int key, int wvalue) {
if (map.containsKey (key)) {
DoubleLinkedListNode oldNode = map.get (key) ;
oldNode.val = value;
removeNode (oldNode) ;
setHead (oldNode) ;
} else {
DoubleLinkedListNode newNode =
new DoubleLinkedListNode (key, value) ;
if (len < capacity) {
setHead (newNode) ;
map.put (key, newNode) ;
len++;
} else {
map.remove (end.key) ;
end = end.pre;
if (end != null) {

end.next = null;

setHead (newNode) ;

map.put (key, newNode) ;

class DoublelLinkedListNode {

public int val;

Program Creek

67 LRU Cache

123 | 181

public int key;
public DoublelLinkedListNode pre;
public DoubleLinkedListNode next;

public DoubleLinkedListNode (int key, int value) {
val = value;

this.key = key;

68 Intersection of Two Linked Lists

Problem

Write a program to find the node at which the intersection of two singly linked lists
begins.
For example, the following two linked lists:

A: al -> a2
->
cl -> c2 -> c3
->
B: bl -> b2 -> b3

begin to intersect at node cl.

Java Solution

First calculate the length of two lists and find the difference. Then start from the longer
list at the diff offset, iterate though 2 lists and find the node.

/**

* Definition for singly-linked list.
* public class ListNode {

* int val;

* ListNode next;

* ListNode (int x) {
* val = x;

* next = null;

*

* }
*/

public class Solution ({

124] 181

public ListNode getIntersectionNode (ListNode heada,

int lenl = 0;
int len2 = 0;
ListNode pl=headA, p2=headB;
if (pl == null || p2 == null)

return null;

while(pl != null) {
lenl++;
pl = pl.next;

}

while (p2 !=null) {
len2++;

p2 = p2.next;

int diff = 0;
pl=headA;
p2=headB;

if(lenl > len2) {
diff = lenl-len2;
int i=0;
while (i<diff) {
pl = pl.next;

i++;
}
lelse{
diff = len2-lenl;
int 1=0;

while (i<diff) {
p2 = p2.next;

i++;
}
}
while(pl !'= null && p2 != null) {
if(pl.val == p2.val) {

return pl;

telse(

pl = pl.next;
p2 = p2.next;

return null;

ListNode headB)

{

125 181

69 Java PriorityQueue Class Example

69 Java PriorityQueue Class Example

In Java, the PriorityQueue class is implemented as a priority heap. Heap is an impor-
tant data structure in computer science. For a quick overview of heap, here is a very
good tutorial.

Simple Example

The following examples shows the basic operations of PriorityQueue such as offer(),
peek(), poll(), and size().

import java.util.Comparator;

import Jjava.util.PriorityQueue;
public class PriorityQueueTest {
static class PQsort implements Comparator<Integer> ({

public int compare (Integer one, Integer two) {

return two - one;

public static void main(String[] args) {
int[] ia = {(1, 10, 5, 3, 4, 7, 6, 9, 8 };

PriorityQueue<Integer> pgl = new PriorityQueue<Integer> () ;

// use offer () method to add elements to the PriorityQueue pgl
for (int x : ia) {

pal.offer (x) ;

System.out.println ("pgl: " + pgl);

PQsort pgs = new PQsort();

PriorityQueue<Integer> pg2 = new PriorityQueue<Integer> (10, pgs);

// In this particular case, we can simply use Collections.reverseOrder ()
// instead of self-defined comparator

for (int x : ia) {

pa2.offer (x) ;

System.out.println ("pg2: " + pg2);

126 | 181 Program Creek

// print size

System.out.println("size: " + pg2.size());

// return highest priority element in the queue without removing it
System.out.println ("peek: " + pg2.peek());

// print size

System.out.println("size: " + pg2.size());

// return highest priority element and removes it from the queue

System.out.println ("poll: " + pg2.poll()):;
// print size
System.out.println("size: " + pg2.size());
System.out.print ("pg2: " + pg2);
}
}
Output:

pql: [1, 3, 5, 8, 4, 7, 6, 10, 9]
pq2: [107 97 77 87 37 57 67 1’ 4]

size: 9
peek: 10
size: 9
poll: 10
size: 8

pg2: [9, 8, 7, 4, 3, 5, 6, 1]

Example of Solving Problems Using PriorityQueue

Merging k sorted list.
For more details about PriorityQueue, please go to doc.

70 Solution for Binary Tree Preorder
Traversal in Java

Preorder binary tree traversal is a classic interview problem about trees. The key to
solve this problem is to understand the following:

e What is preorder? (parent node is processed before its children)

e Use Stack from Java Core library

It is not obvious what preorder for some strange cases. However, if you draw a
stack and manually execute the program, how each element is pushed and popped is

127] 181

obvious.
The key to solve this problem is using a stack to store left and right children, and
push right child first so that it is processed after the left child.

public class TreeNode ({
int val;
TreeNode left;
TreeNode right;

TreeNode (int x) { val = x; }

public class Solution ({
public ArrayList<Integer> preorderTraversal (TreeNode root) {

Arraylist<Integer> returnlList = new ArrayList<Integer>();

if (root == null)

return returnlList;

Stack<TreeNode> stack = new Stack<TreeNode> () ;

stack.push (root) ;

while (!stack.empty()) {
TreeNode n = stack.pop();

returnlList.add (n.val) ;

if(n.right != null) {
stack.push (n.right);

}

if(n.left != null) {
stack.push(n.left);

}

return returnList;

71 Solution of Binary Tree Inorder
Traversal in Java

The key to solve inorder traversal of binary tree includes the following:

e The order of "inorder"” is: left child ->parent ->right child

128 | 181

71 Solution of Binary Tree Inorder Traversal in Java

e Use a stack to track nodes

e Understand when to push node into the stack and when to pop node out of the

stack

//Definition for binary tree
public class TreeNode ({

int val;

TreeNode left;

TreeNode right;

TreeNode (int x) { val = x; }

public class Solution {

public ArrayList<Integer> inorderTraversal (TreeNode root)
// IMPORTANT: Please reset any member data you declared,

{

as

// the same Solution instance will be reused for each test case.

ArrayList<Integer> lst =

if (root == null)

return 1lst;

Stack<TreeNode> stack = new Stack<TreeNode> () ;

//define a pointer to track nodes

TreeNode p = root;

p != null){

while (!stack.empty ()

// if it is not null, push to stack
//and go down the tree to left
if(p != null){

stack.push (p) ;

p = p.left;

Program Creek

= new ArrayList<Integer>();

129 | 181

// if no left child
// pop stack, process the node
// then let p point to the right
lelse{
TreeNode t = stack.pop();
lst.add(t.val) ;
p = t.right;

return 1lst;

72 Solution of Iterative Binary Tree
Postorder Traversal in Java

The key to to iterative postorder traversal is the following:

e The order of "Postorder” is: left child ->right child ->parent node.
e Find the relation between the previously visited node and the current node

e Use a stack to track nodes

As we go down the tree, check the previously visited node. If it is the parent of
the current node, we should add current node to stack. When there is no children
for current node, pop it from stack. Then the previous node become to be under the
current node for next loop.

//Definition for binary tree
public class TreeNode {

int val;

TreeNode left;

TreeNode right;

TreeNode (int x) { val = x; }

public class Solution {
public ArrayList<Integer> postorderTraversal (TreeNode root) {

ArrayList<Integer> lst = new ArrayList<Integer>();

if (root == null)

130 | 181

return lst;

Stack<TreeNode> stack = new Stack<TreeNode> () ;

stack.push (root) ;

TreeNode prev = null;
while (!stack.empty()) {

TreeNode curr = stack.peek();

// go down the tree.
//check if current node is leaf, if so, process it and pop stack,

//otherwise, keep going down

if (prev == null || prev.left == curr || prev.right == curr) {
//prev == null is the situation for the root node
if (curr.left != null) {

stack.push (curr.left);
}else if (curr.right != null) {

stack.push (curr.right) ;
lelse{

stack.pop () ;

lst.add (curr.val) ;

//go up the tree from left node
//need to check if there is a right child
//if yes, push it to stack
//otherwise, process parent and pop stack
}else if (curr.left == prev) {
if (curr.right != null) {
stack.push (curr.right) ;
lelse{
stack.pop () ;

lst.add(curr.val) ;

//go up the tree from right node

//after coming back from right node, process parent node and pop
stack.

lelse if (curr.right == prev) {
stack.pop () ;

lst.add(curr.val);

prev = curr;

return lst;

131|181

73 Validate Binary Search Tree

73 Validate Binary Search Tree

Problem:
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
e The left subtree of a node contains only nodes with keys less than the node’s key.

e The right subtree of a node contains only nodes with keys greater than the node’s
key.
e Both the left and right subtrees must also be binary search trees.

Thoughts about This Problem

All values on the left sub tree must be less than root, and all values on the right sub
tree must be greater than root.

Java Solution

// Definition for binary tree
class TreeNode {

int val;

TreeNode left;

TreeNode right;

TreeNode (int x) {

val = x;

public class Solution {

public static boolean 1sValidBST (TreeNode root) {
return validate (root, Integer.MIN_VALUE, Integer.MAX_ VALUE) ;

public static boolean validate (TreeNode root, int min, int max) {
if (root == null) {

return true;

// not in range

132] 181 Program Creek

if (root.val <= min || root.val >= max) {

return false;

// left subtree must be < root.val && right subtree must be > root.val
return validate (root.left, min, root.val) && validate (root.right,

root.val, max);

74 Flatten Binary Tree to Linked List

Given a binary tree, flatten it to a linked list in-place.
For example, Given

The flattened tree should look like:

Thoughts

Go down through the left, when right is not null, push right to stack.

Java Solution

133] 181

/ *x

* Definition for binary tree
* public class TreeNode {

* int val;

* TreeNode left;

* TreeNode right;

* TreeNode (int x) { val = x; }
* }

*/

public class Solution ({
public void flatten (TreeNode root) {
Stack<TreeNode> stack = new Stack<TreeNode> () ;

TreeNode p = root;
while(p != null || !stack.empty()){
if(p.right != null) {

stack.push (p.right);

if(p.left != null) {
p.right = p.left;
p.left = null;

}else if (!stack.empty()) {
TreeNode temp = stack.pop()
p.right=temp;

p = p.right;

75 Path Sum

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that
adding up all the values along the path equals the given sum.
For example: Given the below binary tree and sum = 22,

134 | 181

75 Path Sum

return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.

Java Solution 1 - Using Queue

Add all node to a queue and store sum value of each node to another queue. When it

is a leaf node, check the stored sum value.

For the tree above, the queue would be: 5-4-8-11-13-4 -7 -2 - 1. It will check

node 13, 7, 2 and 1. This is a typical breadth first search(BFS) problem.

/ *x

x Definition for binary tree
x public class TreeNode ({

* int val;

* TreeNode left;

* TreeNode right;

* TreeNode (int x) { val = x; }
*)

*/

public class Solution {
public boolean hasPathSum(TreeNode root, int sum) {

if (root == null) return false;

LinkedList<TreeNode> nodes = new LinkedList<TreeNode> () ;

LinkedList<Integer> values = new LinkedList<Integer> () ;

nodes.add (root) ;

values.add (root.val);

while (!nodes.isEmpty()) {
TreeNode curr = nodes.poll();

int sumvValue = values.poll () ;

if (curr.left == null && curr.right == null && sumValue==sum) {

return true;

if (curr.left !'= null) {
nodes.add (curr.left);

values.add (sumValue+curr.left.val);

if (curr.right != null) {
nodes.add (curr.right) ;

values.add (sumValue+curr.right.val);

Program Creek

135|181

return false;

Java Solution 2 - Recursion

public boolean hasPathSum(TreeNode root, int sum) {
if (root == null)
return false;
if (root.val == sum && (root.left == null && root.right == null))

return true;

return hasPathSum(root.left, sum - root.val)

| | hasPathSum(root.right, sum - root.val);

Thanks to nebulaliang, this solution is wonderful!

76 Construct Binary Tree from Inorder
and Postorder Traversal

Given inorder and postorder traversal of a tree, construct the binary tree.

Throughts

This problem can be illustrated by using a simple example.

in-order: 4 2 5 (1) 6 7 3 8
post-order: 4 5 2 6 7 8 3 (1)

From the post-order array, we know that last element is the root. We can find the
root in in-order array. Then we can identify the left and right sub-trees of the root
from in-order array.

Using the length of left sub-tree, we can identify left and right sub-trees in post-order
array. Recursively, we can build up the tree.

Java Solution

//Definition for binary tree

136 | 181

public class TreeNode {
int val;
TreeNode left;
TreeNode right;

TreeNode (int x) { val = x; }

public class Solution {
public TreeNode buildTree (int[] inorder, int[] postorder) {
int inStart = 0;
int inEnd = inorder.length-1;
int postStart =0;
int postEnd = postorder.length-1;

return buildTree (inorder, inStart, inEnd, postorder, postStart,

postEnd) ;
}
public TreeNode buildTree (int[] inorder, int inStart, int inEnd,
int[] postorder, int postStart, int postEnd) {
if (inStart > inEnd || postStart > postEnd)

return null;

int rootValue = postorder[postEnd];

TreeNode root = new TreeNode (rootValue) ;

int k=0;
for (int i=0; i< inorder.length; i++) {
if (inorder[i]l==rootValue) {
k =1;
break;

root.left = buildTree (inorder, inStart, k-1, postorder, postStart,

postStart+k- (inStart+1)) ;

// Becuase k is not the length, it it need to - (inStart+l) to get the

length

root.right = buildTree (inorder, k+1, inEnd, postorder,
postStart+k-inStart, postEnd-1);

// postStart+k-inStart = postStart+k- (inStart+1) +1

return root;

1371 181

77 Convert Sorted Array to Binary
Search Tree

Given an array where elements are sorted in ascending order, convert it to a height
balanced BST.

Thoughts

Straightforward! Recursively do the job.

Java Solution

// Definition for binary tree
class TreeNode {

int val;

TreeNode left;

TreeNode right;

TreeNode (int x) {

val = x;

public class Solution ({
public TreeNode sortedArrayToBST (int[] num) {
if (num.length == 0)

return null;

return sortedArrayToBST (num, 0, num.length - 1);

public TreeNode sortedArrayToBST (int[] num, int start, int end) {
if (start > end)

return null;

int mid = (start + end) / 2;

TreeNode root = new TreeNode (num[mid]) ;

root.left = sortedArrayToBST (num, start, mid - 1);
root.right = sortedArrayToBST (num, mid + 1, end);

return root;

138 | 181

78 Convert Sorted List to Binary Search Tree

78 Convert Sorted List to Binary Search
Tree

Given a singly linked list where elements are sorted in ascending order, convert it to a
height balanced BST.

Thoughts

If you are given an array, the problem is quite straightforward. But things get a little
more complicated when you have a singly linked list instead of an array. Now you no
longer have random access to an element in O(1) time. Therefore, you need to create
nodes bottom-up, and assign them to its parents. The bottom-up approach enables us
to access the list in its order at the same time as creating nodes.

Java Solution

// Definition for singly-linked list.
class ListNode {
int val;

ListNode next;

ListNode (int x) {
val = x;

next = null;

// Definition for binary tree
class TreeNode {

int val;

TreeNode left;

TreeNode right;

TreeNode (int x) {

val = x;

public class Solution {
static ListNode h;

public TreeNode sortedListToBST (ListNode head) {

if (head == null)

return null;

Program Creek 139 | 181

h = head;
int len = getLength (head);
return sortedListToBST (0, len - 1);

// get list length

public int getLength (ListNode head) {
int len = 0;
ListNode p = head;

while (p !'= null) {
len++;
p = p.next;

}

return len;

// build tree bottom-up
public TreeNode sortedListToBST (int start, int end) {
if (start > end)

return null;

// mid
int mid = (start + end) / 2;

TreeNode left = sortedListToBST (start, mid - 1);
TreeNode root = new TreeNode (h.val);

h = h.next;

TreeNode right = sortedListToBST (mid + 1, end);

root.left = left;
root.right = right;

return root;

79 Minimum Depth of Binary Tree

Given a binary tree, find its minimum depth.

The minimum depth is the number of nodes along the shortest path from the root
node down to the nearest leaf node.

140 | 181

79 Minimum Depth of Binary Tree

Thoughts

Need to know LinkedList is a queue. add() and remove() are the two methods to
manipulate the queue.

Java Solution

/ *x

* Definition for binary tree
* public class TreeNode {

* int val;

* TreeNode left;

* TreeNode right;

* TreeNode (int x) { val = x; }
*)

*/

public class Solution {
public int minDepth (TreeNode root) {
if (root == null) {

return 0;

LinkedList<TreeNode> nodes = new LinkedList<TreeNode> () ;

LinkedList<Integer> counts = new LinkedList<Integer> () ;

nodes.add (root) ;
counts.add(l);

while (!nodes.isEmpty()) {
TreeNode curr = nodes.remove () ;

int count = counts.remove () ;
if (curr.left != null) {

nodes.add (curr.left);

counts.add (count+1) ;

if (curr.right != null) {
nodes.add (curr.right) ;

counts.add (count+1) ;
if (curr.left == null && curr.right == null) {

return count;

return 0;

Program Creek 141 | 181

80 Binary Tree Maximum Path Sum

Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
For example: Given the below binary tree,

Return 6.

Thoughts

1) Recursively solve this problem 2) Get largest left sum and right sum 2) Compare to
the stored maximum

Java Solution 1

// Definition for binary tree
class TreeNode {

int val;

TreeNode left;

TreeNode right;

TreeNode (int x) {

val = x;

public class Solution {
//store max value

int max;

public int maxPathSum(TreeNode root) {
max = (root == null) ? 0 : root.val;
findMax (root) ;

return max;

142 | 181

public int findMax (TreeNode node) {
if (node == null)

return 0;

// recursively get sum of left and right path
int left = Math.max (findMax (node.left), 0);
int right = Math.max (findMax (node.right), 0):;

//update maximum here

max = Math.max (node.val + left + right, max);

// return sum of largest path of current node

return node.val + Math.max(left, right);

Java Solution 2

We can also use an array to store value for recursive methods.

public class Solution {
public int maxPathSum(TreeNode root) ({
int max[] = new int[1l];
max[0] = Integer .MIN_VALUE;
calculateSum(root, max);

return max[0];

public int calculateSum (TreeNode root, int[] max) {
if (root == null)

return 0;

int left = calculateSum(root.left, max);

int right = calculateSum(root.right, max);

int current = Math.max (root.val, Math.max (root.val + left, root.val +

right));

max[0] = Math.max (max[0], Math.max (current, left + root.val + right));

return current;

143 | 181

81 Balanced Binary Tree

81 Balanced Binary Tree

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as a binary tree in which
the depth of the two subtrees of every node never differ by more than 1.

Thoughts

A typical recursive problem for solving tree problems.

Java Solution

// Definition for binary tree
class TreeNode {

int val;

TreeNode left;

TreeNode right;

TreeNode (int x) {

val = x;

public class Solution {
public boolean isBalanced (TreeNode root) {
if (root == null)

return true;

if (getHeight (root) == -1)

return false;
return true;
public int getHeight (TreeNode root) {
if (root == null)

return 0;

int left = getHeight (root.left);
int right = getHeight (root.right);

if (left == -1 || right == -1)

return -

=

’

if (Math.abs(left - right) > 1) {

return -1;

144] 181 Program Creek

return Math.max (left, right) + 1;

82 Symmetric Tree

Problem

Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its
center).
For example, this binary tree is symmetric:

/N
2 2
/N /
4

\
3 4 3

But the following is not:

Java Solution - Recursion

This problem can be solve by using a simple recursion. The key is finding the con-
ditions that return false, such as value is not equal, only one node(left or right) has
value.

public boolean isSymmetric (TreeNode root) {
if (root == null)
return true;

return isSymmetric (root.left, root.right);

public boolean isSymmetric (TreeNode 1, TreeNode r) {

145 181

if (1 == null && r == null) {
return true;
} else if (r == null || 1 == null) {

return false;

if (l.val != r.val)

return false;

if (!isSymmetric(l.left, r.right))
return false;
if (!isSymmetric(l.right, r.left))

return false;

return true;

83 Clone Graph Java

LeetCode Problem:

Clone an undirected graph. Each node in the graph contains a label and a list of its
neighbors.

146 | 181

83 Clone Graph Java

OJ's undirected graph serialization:

Nodes are labeled uniquely.

We use # as a separator for each node, and , as a separator for node label and each

neighbor of the node.
As an example, consider the serialized graph {0,1,2#1,2#2,2} .
The graph has a total of three nodes, and therefore contains three parts as separated by # .

1. First node is labeled as @ . Connect node @ to both nodes 1 and 2.
2. Second node is labeled as 1. Connectnode 1 tonode 2.
3. Third node is labeled as 2 . Connect node 2 tonode 2 (itself), thus forming a self-

cycle.

Visually, the graph looks like the following:

/ \

0 =2

PN
N

Key to Solve This Problem

e A queue is used to do breath first traversal.

e a map is used to store the visited nodes. It is the map between original node and
copied node.

It would be helpful if you draw a diagram and visualize the problem.

Program Creek 1471 181

83 Clone Graph Java

/ *

* Definition for undirected graph.
* class UndirectedGraphNode {

* int label;

* ArrayList<UndirectedGraphNode> neighbors;

* UndirectedGraphNode (int x) { label = x; neighbors = new
ArrayList<UndirectedGraphNode>(); }

* };

*/

public class Solution {
public UndirectedGraphNode cloneGraph (UndirectedGraphNode node) {
if (node == null)

return null;

LinkedList<UndirectedGraphNode> queue = new
LinkedList<UndirectedGraphNode> () ;
HashMap<UndirectedGraphNode, UndirectedGraphNode> map =
new
HashMap<UndirectedGraphNode, UndirectedGraphNode> () ;

UndirectedGraphNode newHead = new UndirectedGraphNode (node.label) ;

queue.add (node) ;

map.put (node, newHead) ;

148 | 181 Program Creek

while (!queue.isEmpty()) {

UndirectedGraphNode curr = queue.pop () ;

ArrayList<UndirectedGraphNode> currNeighbors = curr.neighbors;

for (UndirectedGraphNode aNeighbor: currNeighbors) {

if (!map.containsKey (aNeighbor)) {

UndirectedGraphNode copy = new
UndirectedGraphNode (aNeighbor.label) ;

map.put (aNeighbor, copy) ;
map.get (curr) .neighbors.add (copy) ;
queue.add (aNeighbor) ;

lelse(
map.get (curr) .neighbors.add (map.get (aNeighbor)) ;

}

return newHead;

84 How Developers Sort in Java?

While analyzing source code of a large number of open source Java projects, I found
Java developers frequently sort in two ways. One is using the sort() method of Col-
lections or Arrays, and the other is using sorted data structures, such as TreeMap and

TreeSet.

Using sort() Method

If it is a collection, use Collections.sort() method.

// Collections.sort
List<ObjectName> list = new ArrayList<ObjectName> () ;
Collections.sort(list, new Comparator<ObjectName> () {
public int compare (ObjectName ol, ObjectName 02) {
return ol.toString() .compareTo (o2.toString());
}
)

If it is an array, use Arrays.sort() method.

149 | 181

84 How Developers Sort in Java?

// Arrays.sort
ObjectName[] arr = new ObjectName[1l0];
Arrays.sort (arr, new Comparator<ObjectName> () {
public int compare (ObjectName ol, ObjectName 02) {
return ol.toString() .compareTo (o2.toString());
}
}) i

This is very convenient if a collection or an array is already set up.

Using Sorted Data Structures

If it is a list or set, use TreeSet to sort.

// TreeSet
Set<ObjectName> sortedSet = new TreeSet<ObjectName> (new
Comparator<ObjectName> () {
public int compare (ObjectName ol, ObjectName 02) {
return ol.toString() .compareTo (o2.toString());
}
1)
sortedSet.addAll (unsortedSet) ;

If it is a map, use TreeMap to sort. TreeMap is sorted by key.

// TreeMap - using String.CASE_INSENSITIVE_ORDER which is a Comparator that
orders Strings by compareToIgnoreCase

Map<String, Integer> sortedMap = new TreeMap<String,
Integer> (String.CASE_INSENSITIVE_ORDER) ;

sortedMap.putAll (unsortedMap) ;

//TreeMap - In general, defined comparator
Map<ObjectName, String> sortedMap = new TreeMap<ObjectName, String> (new
Comparator<ObjectName> () {
public int compare (ObjectName ol, ObjectName o02) {
return ol.toString () .compareTo (02.toString()) ;
}
P
sortedMap.putAll (unsortedMap) ;

This approach is very useful, if you would do a lot of search operations for the
collection. The sorted data structure will give time complexity of O(logn), which is
lower than O(n).

Bad Practices

There are still bad practices, such as using self-defined sorting algorithm. Take the
code below for example, not only the algorithm is not efficient, but also it is not

150 | 181 Program Creek

readable. This happens a lot in different forms of variations.

double t;
for (int 1 = 0; i < 2; i++)
for (int j =1 + 1; j < 3; j++)
if (r[j] < r[i]) {
t = r[i];
r[i] = r(3j1;
r[j] = t;

85 Solution Merge Sort LinkedList in Java

LeetCode - Sort List:
Sort a linked list in O(n log n) time using constant space complexity.
Keys for solving the problem

e Break the list to two in the middle
e Recursively sort the two sub lists

e Merge the two sub lists

This is my accepted answer for the problem.

package algorithm.sort;

class ListNode {
int wval;

ListNode next;

ListNode (int x) {
val = x;

next = null;

public class SortLinkedList {

// merge sort

public static ListNode mergeSortList (ListNode head) {

if (hea

null || head.next
return head;

null)

151|181

85 Solution Merge Sort LinkedList in Java

// count total number of elements

int count = 0;

ListNode p = head;

while (p !'= null) {
count++;

p = p.next;

// break up to two list

int middle = count / 2;

ListNode 1 = head, r = null;

ListNode p2 = head;

int countHalf = 0;

while (p2 != null) {
countHalf++;

ListNode next = p2.next;

if (countHalf == middle) {
p2.next = null;
r = next;

}

p2 = next;

// now we have two parts 1 and r, recursively sort them
ListNode hl = mergeSortList(l);
ListNode h2 = mergeSortList(r);

// merge together
ListNode merged = merge (hl, h2);

return merged;

public static ListNode merge (ListNode 1, ListNode r) {
ListNode pl = 1;
ListNode p2 = r;

ListNode fakeHead = new ListNode (100) ;
ListNode pNew = fakeHead;

while (pl !'= null || p2 != null) {

if (pl == null) {
pNew.next = new ListNode (p2.val) ;
P2 = p2.next;
pNew = pNew.next;

} else if (p2 == null) {

152 | 181 Program Creek

85 Solution Merge Sort LinkedList in Java

pNew.next = new ListNode (pl.val) ;

pl = pl.next;

pNew = pNew.next;

} else {
if (pl.val < p2.val) {
// if (fakeHead)
pNew.next = new ListNode (pl.val) ;
pl = pl.next;
pNew = pNew.next;

} else if (pl.val == p2.val) {
pNew.next = new ListNode (pl.val) ;
pNew.next.next = new ListNode (pl.val) ;
pNew = pNew.next.next;
pl = pl.next;

P2 = p2.next;

} else {
pNew.next = new ListNode (p2.val) ;
p2 = p2.next;

pNew = pNew.next;

// printList (fakeHead.next) ;

return fakeHead.next;

public static void main (String[] args) {
ListNode nl = new ListNode(2);
ListNode n2 = new ListNode (3);
ListNode n3 = new ListNode (4) ;

ListNode n4 = new ListNode (3) ;
ListNode n5 = new ListNode (4) ;
ListNode n6 = new ListNode (5) ;

nl.next = n2;
n2.next = n3;
n3.next = n4;
n4.next = nb5;

n5.next = né6;
nl = mergeSortList (nl) ;

printList (nl);

public static void printList (ListNode x) {
if(x != null){

Program Creek

153 | 181

System.out.print (x.val + " ") ;

while (x.next != null) {
System.out.print(x.next.val + " ");
X = x.next;

}
System.out.println () ;

Output:
233445

86 Quicksort Array in Java

Quicksort is a divide and conquer algorithm. It first divides a large list into two
smaller sub-lists and then recursively sort the two sub-lists. If we want to sort an array
without any extra space, Quicksort is a good option. On average, time complexity is

O(n log(n)).
The basic step of sorting an array are as follows:
e Select a pivot, normally the middle one

e From both ends, swap elements and make all elements on the left less than the
pivot and all elements on the right greater than the pivot

e Recursively sort left part and right part

package algorithm.sort;
public class QuickSort ({
public static void main (String[] args) {
int[] x = {9, 2, 4, 7, 3, 7, 10 };

printArray (x) ;

int low = 0y
int high = x.length - 1;

quickSort(x, low, high);

printArray (x) ;

public static void quickSort(int[] arr, int low, int high) {

154 | 181

if (arr == null || arr.length == 0)

return;

if (low >= high)

return;

//pick the pivot
int middle = low + (high - low) / 2;

int pivot = arr[middle];

//make left < pivot and right > pivot
int 1 = low, j = high;
while (i <= jJ) {

while (arr[i] < pivot) {

alak4k g

int temp = arr[i]:;

arr[i] = arr[]j];
arr[j] = temp;
i++;

J==¢

//recursively sort two sub parts
if (low < j)

quickSort (arr, low, j);

if (high > 1)
quickSort (arr, i, high):;

public static void printArray (int[] x) {

for (int a : X)
System.out.print(a + " ");
System.out.println () ;

Output:
9247371023477910

The mistake [made is selecting the middle element. The middle element is not
(low+high)/2, but low + (high-low)/2. For other parts of the programs, just follow the

1551 181

87 Solution Sort a linked list using insertion sort in Java

algorithm.

87 Solution Sort a linked list using
insertion sort in Java

Insertion Sort List:
Sort a linked list using insertion sort.
This is my accepted answer for LeetCode problem - Sort a linked list using insertion
sort in Java. It is a complete program.
Before coding for that, here is an example of insertion sort from wiki. You can get
an idea of what is insertion sort.
37495261
37495261
37495261
34795261
34795261
34579261
23457961
23456791

12345679

Code:

package algorithm.sort;
class ListNode {
int wval;
ListNode next;
ListNode (int x) {

val = x;

next = null;

}

public class SortLinkedList {
public static ListNode insertionSortList (ListNode head) {

156 | 181 Program Creek

87 Solution Sort a linked list using insertion sort in Java

if (head == null || head.next == null)

return head;

ListNode newHead = new ListNode (head.val);

ListNode pointer = head.next;

// loop through each element in the list
while (pointer != null) {

// insert this element to the new list

ListNode innerPointer = newHead;

ListNode next = pointer.next;

if (pointer.val <= newHead.val) {
ListNode oldHead = newHead;
newHead = pointer;
newHead.next = oldHead;

} else {

while (innerPointer.next != null) {

if (pointer.val > innerPointer.val && pointer.val <=
innerPointer.next.val) {
ListNode oldNext = innerPointer.next;
innerPointer.next = pointer;

pointer.next = oldNext;

innerPointer = innerPointer.next;

if (innerPointer.next == null && pointer.val > innerPointer.val) {
innerPointer.next = pointer;

pointer.next = null;

// finally

pointer = next;

return newHead;

public static void main (String[] args) {
ListNode nl = new ListNode (2) ;
ListNode n2 = new ListNode (3);
ListNode n3 = new ListNode (4) ;

ListNode n4 = new ListNode (3);
ListNode n5 = new ListNode (4) ;

Program Creek 157 | 181

ListNode n6 = new ListNode (5) ;

nl.next = n2;
n2.next = n3;
n3.next = n4;
n4.next = nb;
n5.next = n6;

nl = insertionSortList (nl) ;

printList (nl) ;

public static void printList (ListNode x) {
if(x !'= null){

System.out.print (x.val + " ") ;

while (x.next != null) {
System.out.print (x.next.val + " ");
X = xX.next;

}

System.out.println () ;

Output:
233445

88 Maximum Gap

Problem

Given an unsorted array, find the maximum difference between the successive ele-
ments in its sorted form.

Try to solve it in linear time/space. Return O if the array contains less than 2 ele-
ments. You may assume all elements in the array are non-negative integers and fit in
the 32-bit signed integer range.

Java Solution 1 - Sort

A straightforward solution would be sorting the array first (O(nlogn) and then finding
the maximum gap. The basic idea is to project each element of the array to an array of

158 | 181

88 Maximum Gap

buckets. Each bucket tracks the maximum and minimum elements. Finally, scanning
the bucket list, we can get the maximum gap.
The key part is to get the interval:

From: interval x (num[i] - min) = 0 and interval * (max -num[i]) = n

interval = num.length / (max - min)

See the internal comment for more details.

Java Solution 2 - Bucket Sort

We can use a bucket-sort like algorithm to solve this problem in time of O(n) and space
O(n).

class Bucket({
int low;
int high;
public Bucket () {
low = -1;
high = -1;

public int maximumGap (int[] num) {
if (num == null || num.length < 2){

return 0;

int max = num[O0];

int min = num[O0];

for (int i=1; i<num.length; i++) {
max = Math.max (max, num[i]) ;

min = Math.min (min, num[i]);

// initialize an array of buckets
Bucket[] buckets = new Bucket[num.length+1l]; //project to (0 - n)
for (int i=0; i<buckets.length; i++) {

buckets[i] = new Bucket () ;

double interval = (double) num.length / (max - min) ;
//distribute every number to a bucket array

for (int i=0; i<num.length; i++){

int index = (int) ((num[i] - min) =* interval):;
if (buckets[index].low == -1){
buckets[index] .low = num[i];

buckets[index] .high = num([i];

Program Creek 159 | 181

}else{
buckets[index] .low = Math.min (buckets[index].low, numl[i])

buckets[index].high = Math.max (buckets[index].high, num[i]);

//scan buckets to find maximum gap
int result = 0;
int prev = buckets[0] .high;
for (int i=1; i<buckets.length; i++) {
if (buckets[i].low != -1){
result = Math.max (result, buckets[i].low-prev) ;

prev = buckets[i].high;

return result;

89 Iteration vs. Recursion in Java

Recursion

Consider the factorial function: n!=n*(n-1)*(n-2)*..*1

There are many ways to compute factorials. One way is that n! is equal to n*(n-1)!.
Therefore the program can be directly written as:

Program 1:

int factorial (int n) {
if (n == 1) {
return 1;
} else {

return n*factorial (n-1);

In order to run this program, the computer needs to build up a chain of multipli-
cations: factorial(n) — factorial(n-1)— factorial(n-2)— ... — factorial(1). Therefore,
the computer has to keep track of the multiplications to be performed later on. This
type of program, characterized by a chain of operations, is called recursion. Recursion
can be further categorized into linear and tree recursion. When the amount of infor-
mation needed to keep track of the chain of operations grows linearly with the input,

160 | 181

89 lteration vs. Recursion in Java

the recursion is called linear recursion. The computation of n! is such a case, because
the time required grows linearly with n. Another type of recursion, tree recursion,
happens when the amount of information grows exponentially with the input. But we
will leave it undiscussed here and go back shortly afterwards.

Iteration

A different perspective on computing factorials is by first multiplying 1 by 2, then
multiplying the result by 3, then by 4, and so on until n. More formally, the program
can use a counter that counts from 1 up to n and compute the product simultaneously
until the counter exceeds n. Therefore the program can be written as:

Program 2:

int factorial (int n) {
int product = 1;
for (int i=2; i<n; i++) {
product x= 1i;
}

return product;

This program, by contrast to program 2, does not build a chain of multiplication. At
each step, the computer only need to keep track of the current values of the product
and i. This type of program is called iteration, whose state can be summarized by
a fixed number of variables, a fixed rule that describes how the variables should be
updated, and an end test that specifies conditions under which the process should
terminate. Same as recursion, when the time required grows linearly with the input,
we call the iteration linear recursion.

Recursion vs lteration

Compared the two processes, we can find that they seem almost same, especially in
term of mathematical function. They both require a number of steps proportional to
n to compute n!. On the other hand, when we consider the running processes of the
two programs, they evolve quite differently.

In the iterative case, the program variables provide a complete description of the
state. If we stopped the computation in the middle, to resume it only need to supply
the computer with all variables. However, in the recursive process, information is
maintained by the computer, therefore "hidden" to the program. This makes it almost
impossible to resume the program after stopping it.

Tree recursion

As described above, tree recursion happens when the amount of information grows
exponentially with the input. For instance, consider the sequence of Fibonacci num-

Program Creek 161 | 181

89 lteration vs. Recursion in Java

bers defined as follows:

(0 if n=0:
Fib{n) = 1 iftn=1;:
Fib(#n — 1) + Fib{n — 2} otherwise

By the definition, Fibonacci numbers have the following sequence, where each num-
ber is the sum of the previous two: 0, 1, 1, 2, 3,5, 8, 13, 21, ...

Arecursive program can be immediately written as:

Program 3:

int fib (int n) {
if (n == 0) {
return 0;
} else if (n == 1) {
return 1
} else {
return fib(n-1) + fib (n-2);

Therefore, to compute fib(5), the program computes fib(4) and fib(3). To computer
fib(4), it computes fib(3) and fib(2). Notice that the fib procedure calls itself twice at
the last line. Two observations can be obtained from the definition and the program:

e The ith Fibonacci number Fib(i) is equal to phi(i)/rootsquare(5) rounded to the
nearest integer, which indicates that Fibonacci numbers grow exponentially.

e This is a bad way to compute Fibonacci numbers because it does redundant
computation. Computing the running time of this procedure is beyond the
scope of this article, but one can easily find that in books of algorithms, which is
O(phi(n)). Thus, the program takes an amount of time that grows
exponentiallywith the input.

On the other hand, we can also write the program in an iterative way for computing
the Fibonacci numbers. Program 4 is a linear iteration. The difference in time required
by Program 3 and 4 is enormous, even for small inputs.

Program 4:

int fib (int n) {
int fib = 0
int a = 1;
for (int 1i=0; i<n; 1i++) {
fib = fib + a;
a = fib;
}

return fib;

162 | 181 Program Creek

However, one should not think tree-recursive programs are useless. When we con-
sider programs that operate on hierarchically data structures rather than numbers, tree-
recursion is a natural and powerful tool. It can help us understand and design programs.
Compared with Program 3 and 4, we can easily tell Program 3 is more straightforward,
even if less efficient. After that, we can most likely reformulate the program into an
iterative way.

90 Edit Distance in Java

From Wiki:

In computer science, edit distance is a way of quantifying how dissimilar two strings
(e.g., words) are to one another by counting the minimum number of operations required
to transform one string into the other.

There are three operations permitted on a word: replace, delete, insert. For example,
the edit distance between "a" and "b" is 1, the edit distance between "abc" and "def" is
3. This post analyzes how to calculate edit distance by using dynamic programming.

Key Analysis

Let dp[i][j] stands for the edit distance between two strings with length i and j, i.e.,
word1[0,...,i-1] and word2[0,...,j-1]. There is a relation between dp[i][j] and dp[i-1][j-1].
Let’s say we transform from one string to another. The first string has length i and

it's last character is "x"; the second string has length j and its last character is "y". The
following diagram shows the relation.

163 | 181

90 Edit Distance in Java

length
=j

e if x ==y, then dp[i][j] == dp[i-1][j-1]

e if x I=y, and we insert y for wordl, then dp[i][j] = dp[i][j-1] + 1

e if x I=y, and we delete x for wordl, then dp[i][j] = dp[i-1][j] + 1

e if x I=y, and we replace x with y for wordl, then dp[i][j] = dp[i-1][j-1] + 1
e When x!=y, dp[i][j] is the min of the three situations.

Initial condition: dp[i][0] = i, dp[0][j] = j

Java Code

After the analysis above, the code is just a representation of it.

public static int minDistance (String wordl, String word2) ({
int lenl = wordl.length();
int len2 = word2.length();

// lenl+1, len2+1, because finally return dp[lenl] [len2]
int[][] dp = new int[lenl + 1][len2 + 1];

for (int i = 0; 1 <= lenl; i++) {
i

dp[i] [0] =

for (int j =
dp[0][J]

;3 <= len2; j++) {

w. O
~.

164 | 181 Program Creek

//iterate though, and check last char
for (int 1 = 0; i < lenl; i++) {
char cl = wordl.charAt (i) ;
for (int j = 0; j < len2; j++) {
char c2 = word2.charAt(j);

//if last two chars equal

if (cl == c2) {
//update dp value for +1 length
dp[i + 1]1[J + 1] = dp[i][J]~

} else {

int replace = dp[i][j] + 1;
int insert = dp[i][j + 1] + 1;
int delete = dp[i + 1]1[j] + 1;

int min = replace > insert ? insert : replace;
min = delete > min ? min : delete;
dpl[i + 1][j + 1] = min;

return dp[lenl][len2];

91 Single Number

The problem:
Given an array of integers, every element appears twice except for one. Find that single
one.

Thoughts

The key to solve this problem is bit manipulation. XOR will return 1 only on two
different bits. So if two numbers are the same, XOR will return 0. Finally only one
number left.

Java Solution

public class Solution {

public int singleNumber (int[] A) {

165 | 181

int x=0;

for (int a: A) {

(
x = x " ay

return x;

The question now is do you know any other ways to do this?

92 Single Number Il

Problem

Given an array of integers, every element appears three times except for one. Find that
single one.

Java Solution

This problem is similar to Single Number.

public int singleNumber (int[] A) {
int ones = 0, twos = 0, threes = 0;
for (int 1 = 0; i1 < A.length; i++) {

twos |= ones & A[i];

ones "= A[i];

threes = ones & twos;
ones &= ~threes;
twos &= ~threes;

}

return ones;

93 Twitter Codility Problem Max Binary
Gap

Problem: Get maximum binary Gap.

166 | 181

For example, 9’s binary form is 1001, the gap is 2.
Thoughts

The key to solve this problem is the fact that an integer x & 1 will get the last digit of
the integer.

Java Solution

public class Solution ({
public static int solution (int N) {
int max = 0;
int count = -1;

int r = 0;

while (N > 0) {
// get right most bit & shift right
r =N & 1;
N =N >> 1;

if (0 == r && count >= 0) {
count++;

}

if (1 == r) {
max = count > max ? count : max;
count = 0;

return max;

public static void main (String[] args) {

System.out.println (solution (9)) ;

94 Number of 1 Bits

167 | 181

Problem

Write a function that takes an unsigned integer and returns the number of '1’ bits it
has (also known as the Hamming weight).

For example, the 32-bit integer '11’ has binary representation 00000000000000000000000000001911,

so the function should return 3.

Java Solution

public int hammingWeight (int n) {
int count = 0;
for(int i=1; i<33; 1i++){
if (getBit (n, i) == true) {
count++;
}
}
return count;

}

public boolean getBit (int n, int 1) {
return (n & (1 << 1)) != 0;

}

95 Reverse Bits

Problem

Reverse bits of a given 32 bits unsigned integer.

For example, given input 43261596 (represented in binary as 000000101001010000011110100111
return 964176192 (represented in binary as 00111001011110000010100101000000).

Follow up: If this function is called many times, how would you optimize it?

Related problem: Reverse Integer

Java Solution

public int reverseBits(int n) {
for (int i = 0; i < 1l6; i++) {

n = swapBits(n, i, 32 - i - 1);

168 | 181

00),

return n;

public int swapBits (int n, int i, int j) {
int a = (n >> i) & 1;
int b = (n >> j) & 1;

if ((a ~ b) !'=0) {

return n "= (1 << i) | (1 << 3);

return n;

96 Permutations

Given a collection of numbers, return all possible permutations.

For example,
[1,2,3] have the following permutations:
t1,2,31, I[1,3,21, [(2,1,31, [2,3,11, [3,1,2], and [3,2,1].

Java Solution 1

We can get all permutations by the following steps:

]

’

’

’

[1
[2
[1
[3
(2,
[2
[3
[1
[1

~

’

~

’

’

~

N WP P Ww N DN
~

~

~
w NN W R

’

Loop through the array, in each iteration, a new number is added to different loca-
tions of results of previous iteration. Start from an empty List.

public ArrayList<ArrayList<Integer>> permute (int[] num) {
ArraylList<ArrayList<Integer>> result = new ArraylList<ArrayList<Integer>>();

//start from an empty list

169 | 181

96 Permutations

result.add(new ArrayList<Integer>());

for (int 1 = 0; i < num.length; i++) {
//1list of list in current iteration of the array num
ArraylList<ArrayList<Integer>> current = new

ArrayList<ArrayList<Integer>>() ;

for (ArraylList<Integer> 1 : result) ({
// # of locations to insert is largest index + 1
for (int j = 0; j < l.size()+1l; J++) {
// + add num[i] to different locations
l.add(j, num[i]);

Arraylist<Integer> temp = new ArrayList<Integer>(1l);

’

current.add (temp) ;
//System.out.println (temp) ;

// - remove num[i] add

1.remove (J) ;

result = new ArrayList<ArrayList<Integer>> (current) ;

return result;

Java Solution 2

We can also recursively solve this problem. Swap each element with each element
after it.

public ArrayList<ArrayList<Integer>> permute (int[] num) {
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
permute (num, 0, result);

return result;
void permute (int[] num, int start, ArraylList<ArraylList<Integer>> result) {
if (start >= num.length) {

ArraylList<Integer> item = convertArrayToList (num) ;
result.add (item) ;

for (int j = start; j <= num.length - 1; j++) {

170 | 181 Program Creek

swap (num, start, j);
permute (num, start + 1, result);

swap (num, start, j);

private ArrayList<Integer> convertArrayToList (int[] num) {
ArraylList<Integer> item = new ArrayList<Integer>();
for (int h = 0; h < num.length; h++) {
item.add (num[h]) ;
}

return item;

private void swap(int[] a, int i, int j) {
int temp = al[i];
ali] = aljl»

aljl = temp;

97 Permutations |l

Given a collection of numbers that might contain duplicates, return all possible unique
permutations.

For example, [1l,1,2] have the following unique permutations:
f1,1,21, I[1,2,11, and [2,1,1].

Basic Ildea

For each number in the array, swap it with every element after it. To avoid duplicate,
we need to check the existing sequence first.

Java Solution 1

public ArrayList<ArrayList<Integer>> permuteUnique (int[] num) {
ArraylList<ArrayList<Integer>> result = new ArraylList<ArrayList<Integer>>();
permuteUnique (num, 0, result);

return result;

171|181

97 Permutations Il

private void permuteUnique (int[] num, int start,

ArraylList<ArrayList<Integer>> result) {

if (start >= num.length) {
ArraylList<Integer> item = convertArrayTolList (num);

result.add(item) ;

for (int j = start; j <= num.length-1; j++) {
if (containsDuplicate (num, start, j)) {
swap (num, start, Jj);
permuteUnique (num, start + 1, result);

swap (num, start, j);

private ArrayList<Integer> convertArrayToList (int[] num) {
Arraylist<Integer> item = new ArraylList<Integer>();
for (int h = 0; h < num.length; h++) {
item.add (num[h]) ;
}

return item;

private boolean containsDuplicate(int[] arr, int start, int end) {
for (int i = start; 1 <= end-1; i++) {
if (arr[i] == arr[end]) {

return false;

}

return true;

private void swap(int[] a, int i, int j) {
int temp = ali];
alil = aljl;
alj] = temp;

Java Solution 2

Use set to maintain uniqueness:

public static ArraylList<ArrayList<Integer>> permuteUnique (int[] num) {
ArraylList<ArrayList<Integer>> returnlist = new
ArrayList<ArrayList<Integer>> () ;

returnlList.add (new ArrayList<Integer>());

172]| 181 Program Creek

for (int 1 = 0; i < num.length; i++) {
Set<ArraylList<Integer>> currentSet = new HashSet<ArrayList<Integer>>();
for (List<Integer> 1 : returnList) {
for (int j = 0; J < l.size() + 1; Jj++) {
l.add(j, num[i]);
ArraylList<Integer> T = new ArraylList<Integer>(1l);
1l.remove () ;

currentSet.add (T) ;

}

returnlist = new ArraylList<ArrayList<Integer>> (currentSet);

return returnlList;

Thanks to Milan for such a simple solution!

98 Permutation Sequence

The set [1,2,3,...,n] contains a total of n! unique permutations.
By listing and labeling all of the permutations in order, We get the following se-
quence (ie, for n = 3):

DR3P
D3R
DRI
eI
DR
DRI

Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.

Thoughts

Naively loop through all cases will not work.

Java Solution 1

public class Solution {

public String getPermutation(int n, int k) {

// initialize all numbers

173|181

98 Permutation Sequence

ArraylList<Integer> numberList = new ArraylList<Integer>();
for (int i = 1; i <= n; i++) {

numberList.add (1) ;

// change k to be index
k==;

// set factorial of n

int mod = 1;

for (int i = 1; 1 <= n; i++) {
mod = mod x 1i;

}

String result = "";

// find sequence
for (int 1 = 0; 1 < n; 1i++) {
mod = mod / (n - 1i);
// find the right number (curIndex) of
int curIndex = k / mod;
// update k
k = k $ mod;

// get number according to curIndex
result += numberList.get (curlndex) ;
// remove from list

numberList.remove (curIndex) ;

return result.toString();

Java Solution 2

public class Solution {

public String getPermutation(int n, int k) {

boolean[] output = new boolean[n];
StringBuilder buf = new StringBuilder ("");
int[] res = new int[n];
res[0] = 1;
for (int i = 1; 1 < n; i++)

res[i] = res[i - 1] * 1i;
for (int i = n - 1; 1 >= 0; i--) {

174] 181 Program Creek

int s = 1;

while (k > res[i]) {
s++;
k = k - res[i];

for (int j = 0; j < n; Jj++) {
if (J + 1 <= s && output[j]) {
S++;

output([s - 1] = true;
buf.append (Integer.toString(s));

return buf.toString () ;

99 Generate Parentheses

Given n pairs of parentheses, write a function to generate all combinations of well-
formed parentheses.
For example, given n = 3, a solution set is:

Java Solution

Read the following solution, give n=2, walk though the code. Hopefully you will
quickly get an idea.

public List<String> generateParenthesis (int n) {
ArrayList<String> result = new ArrayList<String> () ;
ArrayList<Integer> diff = new ArrayList<Integer>() ;

result.add(("") ;
diff.add(0) ;

for (int 1 = 0; i < 2 * n; 1i++) {
ArrayList<String> templ = new ArrayList<String>();

175] 181

Arraylist<Integer> temp2 = new ArraylList<Integer>();

for (int j = 0; j < result.size(); Jj++) {
String s = result.get(]j);
int k = diff.get(j);

if (1 <2 *n - 1) {
templ.add(s + "(");
temp2.add(k + 1);

if (k>0 && 1 <2 *n -1 || k==1 &% i ==2 n - 1) {
templ.add(s + ")");
temp2.add(k - 1);

result = new ArrayList<String> (templ) ;

diff = new ArraylList<Integer> (temp2) ;

return result;

Solution is provided first now. [will come back and draw a diagram to explain the
solution.

100 Reverse Integer

LeetCode - Reverse Integer:
Reverse digits of an integer. Examplel: x = 123, return 321 Example2: x = -123, return
-321

Naive Method
We can convert the integer to a string/char array, reverse the order, and convert the

string/char array back to an integer. However, this will require extra space for the
string. It doesn’t seem to be the right way, if you come with such a solution.

Efficient Approach

Actually, this can be done by using the following code.

public int reverse (int x) {

176 | 181

100 Reverse Integer

//flag marks if x is negative
boolean flag = false;
if (x < 0) {

x =0 - x;

flag = true;

int res = 0;

int p = x;

while (p > 0) {
int mod = p $ 10;
p=p / 10;
res = res x 10 + mod;

if (flag) {

res = 0 - res;

return res;

Succinct Solution

This solution is from Sherry, it is succinct and it is pretty.

public int reverse (int x) {

int rev = 0;

while(x !'= 0){
rev = revx10 + x%10;
x = x/10;

return rev;

Handle Out of Range Problem

As we form a new integer, it is possible that the number is out of range. We can use
the following code to assign the newly formed integer. When it is out of range, throw
an exception.

try{
result = ...;
}catch (InputMismatchException exception) {

System.out.println ("This is not an integer");

Program Creek 177] 181

Please leave your comment if there is any better solutions.

101 Palindrome Number

Determine whether an integer is a palindrome. Do this without extra space.

Thoughts

Problems related with numbers are frequently solved by / and

Note: no extra space here means do not convert the integer to string, since string
will be a copy of the integer and take extra space. The space take by div, left, and right
can be ignored.

Java Solution

public class Solution {
public boolean isPalindrome (int x) {
//negative numbers are not palindrome
if (x < 0)

return false;

// initialize how many zeros

int div = 1;

while (x / div >= 10) {
div x= 10;

}

while (x !'= 0) {

int left = x / div;

o)

int right = x % 10;

if (left != right)

return false;

X = (x % div) / 10;
div /= 100;

return true;

178 | 181

102 Pow(x, n)

102 Pow(x, n)

Problem:
Implement pow(x, n).
This is a great example to illustrate how to solve a problem during a technical in-
terview. The first and second solution exceeds time limit; the third and fourth are
accepted.

Naive Method

First of all, assuming n is not negative, to calculate x to the power of n, we can simply
multiply X n times, i.e, x * x * ... * x. The time complexity is O(n). The implementation
is as simple as:

public class Solution ({
public double pow (double x, int n) {
if(x == 0) return O;

if(n == 0) return 1;
double result=1l;

for (int i=1; i<=n; i++) {

result = result *x x;

return result;

Now we should think about how to do better than O(n).

Recursive Method

Naturally, we next may think how to do it in O(logn). We have a relation that xii =
x (n/2) *x (n/2) *x (n

public static double pow(double x, int n) {
if(n == 0)

return 1;

if(n == 1)

return x;

Program Creek 179 181

102 Pow(x, n)

int half = n/2;

int remainder = n%2;

if(n $ 2 ==1 && x < 0 && n < 0)

return - 1/ (pow(-x, half) * pow(-x, half) * pow(-x, remainder)) ;
else 1f (n < 0)

return 1/ (pow(x, -half) x pow(x, -half) x pow(x, —-remainder));
else

return (pow(x, half) % pow(x, half) % pow(x, remainder)):;

In this solution, we can handle cases that x <0 and n <0. This solution actually takes
more time than the first solution. Why?

Accepted Solution

The accepted solution is also recursive, but does division first. Time complexity is
O(nlog(n)). The key part of solving this problem is the while loop.

public double pow (double x, int n) {
if (n == 0)
return 1;
if (n == 1)

return x;

int pn = n >0 2?2 n : -n;// positive n

int pn2 = pn;

double px = x > 0 ? x : -x;// positive x

double result = px;

int k = 1;
//the key part of solving this problem
while (pn / 2 > 0) {

result = result * result;

pn = pn / 2;

k =k x 2;

result = result *x pow(px, pn2 - k);
// handle negative result
if (x < 0 && n $ 2 == 1)
result = -result;
// handle negative power

if (n < 0)

result = 1 / result;

180 | 181 Program Creek

Pow(x, n)

return result;

Best Solution

The most understandable solution I have found so far.

public double power (double x, int n) {
if (n == 0)
return 1;

double v = power(x, n / 2);

if (n $ 2 == 0) {
return v *x v;
} else {

return v *x v *x X;

public double pow (double x, int n) {
if (n < 0) {
return 1 / power (x, -n);
} else {

return power (X, n);

181 | 181

	JAVA 8
	1 Rotate Array in Java
	You may have been using Java for a while. Do you think a simple Java array question can be a challenge? Let’s use the following problem to test.
	In a straightforward way, we can create a new array and then copy elements to the new array. Then change the original array by using System.arraycopy().
	Solution 2 - Bubble Rotate
	Can we do this in O(1) space?
	1 Rotate Array in Java

	Solution 3 - Reversal
	Can we do this in O(1) space and in O(n) time? The following solution does. Assuming we are given 1,2,3,4,5,6 and order 2. The basic idea is:

	2 Evaluate Reverse Polish Notation
	The problem:
	This problem is simple. After understanding the problem, we should quickly realize that this problem can be solved by using a stack. We can loop through each element in the given array. When it is a number, push it to the stack. When it is an operator...
	contains compilation errors in leetcode. Why?
	Accepted Solution
	If you want to use switch statement, you can convert the above by using the following code which use the index of a string "+-*/".

	3 Solution of Longest Palindromic Substring in Java
	Naively, we can simply examine every substring and check if it is palindromic. The time complexity is O(n3ˆ). If this is submitted to LeetCode onlinejudge, an error mes- sage will be returned - "Time Limit Exceeded". Therefore, this approach is just ...
	Dynamic Programming
	Let s be the input string, i and j are two indices of the string.
	Start condition:
	Changing condition:
	Time O(n2ˆ) Space O(n2ˆ)
	3 Solution of Longest Palindromic Substring in Java

	Given an input, we can use printTable method to examine the table after each itera- tion. For example, if input string is "dabcba", the final matrix would be the following:

	Simple Algorithm
	From Yifan’s comment below. Time O(n2ˆ), Space O(1)

	Manacher’s Algorithm
	Manacher’s algorithm is much more complicated to figure out, even though it will bring benefit of time complexity of O(n).

	4 Solution Word Break
	This problem can be solve by using a naive approach, which is trivial. A discussion can always start from that though.
	Time: O(n2ˆ)
	Dynamic Programming
	The key to solve this problem by using dynamic programming approach:
	• Initial state t[0] == true
	4 Solution Word Break

	Time: O(string length * dict size)

	Regular Expression
	The problem is supposed to be equivalent to matching the regexp (leet|code)*, which means that it can be solved by building a DFA in O(2mˆ) and executing it in O(n). (Thanks to hdante.) Leetcode online judge does not allow using Patte...

	The More Interesting Problem
	The dynamic solution can tell us whether the string can be broken to words, but can not tell us what words the string is broken to. So how to get those words?

	5 Word Break II
	Given a string s and a dictionary of words dict, add spaces in s to construct a sentence where each word is a valid dictionary word. Return all such possible sentences.
	This problem is very similar to Word Break. Instead of using a boolean array to track the match positions, we need to track the actual words. Then we can use depth first search to get all the possible paths, i.e., the list of strings.
	5 Word Break II

	6 Word Ladder
	The problem:
	Only one letter can be changed at a time Each intermediate word must exist in the dictionary For example,
	As one shortest transformation is "hit" ->"hot" ->"dot" ->"dog" ->"cog", the program should return its length 5.
	This problem is a classic problem that has been asked frequently during interviews.
	In a simplest way, we can start from start word, change one character each time, if it is in the dictionary, we continue with the replaced word, until start == end.
	Apparently, this is not good enough. The following example exactly shows the problem. It can not find optimal path. The output is 3, but it actually only takes 2.
	Breath First Search
	So we quickly realize that this looks like a tree searching problem for which breath first guarantees the optimal solution.
	Assuming we have some words in the dictionary, and the start is "hit" as shown in the diagram below.
	Updated on 2/27/2015.

	What learned from this problem?
	• Use breath-first or depth-first search to solve problems

	7 Median of Two Sorted Arrays Java
	LeetCode Problem:
	This problem can be converted to the problem of finding kth element, k is (A’s length
	If any of the two arrays is empty, then the kth element is the non-empty array’s kth element. If k == 0, the kth element is the first element of A or B.
	23 | 181
	The Steps of the Algorithm
	Thanks to Gunner86. The description of the algorithm is awesome!
	2) If m1 and m2 both are equal then we are done, and return m1 (or m2) 3) If m1

	8 Regular Expression Matching in Java
	Problem:
	First of all, this is one of the most difficulty problems. It is hard to handle many cases. The problem should be simplified to handle 2 basic cases:
	• the second char of pattern is not "*"
	For the 2nd case, if the first char of pattern is "." or first char of pattern == the first i char of string, continue to match the left.
	Java Solution 1 (Short)
	The following Java solution is accepted.

	Java Solution 2 (More Readable)

	9 Merge Intervals
	Problem:
	The key to solve this problem is defining a Comparator first to sort the arraylist of Intevals. And then merge some intervals.
	Java Solution

	10 Insert Interval
	Problem:
	Java Solution

	11 Two Sum
	This problem is pretty straightforward. We can simply examine every possible pair of numbers in this integer array.
	Better Solution
	Use HashMap to store the target value.
	Time complexity depends on the put and get operations of HashMap which is nor- mally O(1).

	12 Two Sum II Input array is sorted
	This problem is similar to Two Sum.

	13 Two Sum III Data structure design
	Design and implement a TwoSum class. It should support the following operations: add and find.
	For example,
	Since the desired class need add and get operations, HashMap is a good option for this purpose.

	14 3Sum
	Problem:
	Note: Elements in a triplet (a,b,c) must be in non-descending order. (ie, a b c) The solution set must not contain duplicate triplets.
	Naive solution is 3 loops, and this gives time complexity O(n3ˆ). Apparently this is not an acceptable solution, but a discussion can start from here.
	14 3Sum

	* The solution also does not handle duplicates. Therefore, it is not only time ineffi- cient, but also incorrect.
	Better Solution
	A better solution is using two pointers instead of one. This makes time complexity of O(n2ˆ).

	15 4Sum
	Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c
	Note: Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤
	15 4Sum

	Java Solution
	Here is the hashCode method of ArrayList. It makes sure that if all elements of two lists are the same, then the hash code of the two lists will be the same. Since each element in the ArrayList is Integer, same integer has same hash code.

	16 3Sum Closest
	Java Solution

	17 String to Integer (atoi)
	Problem:
	Hint: Carefully consider all possible input cases. If you want a challenge, please do not see below and ask yourself what are the possible input cases.
	The vague description give us space to consider different cases.
	Java Solution

	18 Merge Sorted Array
	Note: You may assume that A has enough space to hold additional elements from
	The key to solve this problem is moving element of A and B backwards. If B has some elements left after A is done, also need to handle that case.
	Java Solution 1
	Java Solution 2
	The loop condition also can use m+n like the following.

	19 Valid Parentheses
	Problem:
	Java Solution
	Simplified Java Solution
	Almost identical, but convert string to char array at the beginning.

	20 Implement strStr()
	Problem:
	Java Solution
	From Tia:

	21 Set Matrix Zeroes
	This problem can solve by following 4 steps:
	• mark zeros on first row and column
	Java Solution

	22 Search Insert Position
	Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order. You may assume no duplicates in the array.
	Naively, we can just iterate the array and compare target with ith and (i+1)th element. Time complexity is O(n)
	Solution 2
	This also looks like a binary search problem. We should try to make the complexity to be O(nlogn).

	23 Longest Consecutive Sequence Java
	Given an unsorted array of integers, find the length of the longest consecutive elements sequence.
	should be [1, 2, 3, 4]. Its length is 4.
	Java Solution
	We can use a HashSet to add and remove elements. HashSet is implemented by using a hash table. Elements are not ordered. The add, remove and contains methods have constant time complexity O(1).
	After an element is checked, it should be removed from the set. Otherwise, time complexity would be O(mn) in which m is the average length of all consecutive se- quences.

	24 Valid Palindrome
	Given a string, determine if it is a palindrome, considering only alphanumeric charac- ters and ignoring cases.
	Note: Have you consider that the string might be empty? This is a good question to ask during an interview.
	Java Solution 1 - Naive
	24 Valid Palindrome
	24 Valid Palindrome (1)

	Java Solution 2 - Using Stack
	This solution removes the special characters first. (Thanks to Tia)

	Java Solution 3 - Using Two Pointers
	In the discussion below, April and Frank use two pointers to solve this problem. This solution looks really simple.

	25 Spiral Matrix
	Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.
	You should return [1,2,3,6,9,8,7,4,5].
	If more than one row and column left, it can form a circle and we process the circle. Otherwise, if only one row or column left, we process that column or row ONLY.
	25 Spiral Matrix

	Java Solution 2
	We can also recursively solve this problem. The solution’s performance is not better than Solution or as clear as Solution 1. Therefore, Solution 1 should be preferred.

	26 Search a 2D Matrix
	Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has properties:
	For example, consider the following matrix:
	Given target = 3, return true.
	This is a typical problem of binary search.

	27 Rotate Image
	You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise).
	In the following solution, a new 2-dimension array is created to store the rotated matrix, and the result is assigned to the matrix at the end. This is WRONG! Why?
	The problem is that Java is pass by value not by refrence! "matrix" is just a reference to a 2-dimension array. If "matrix" is assigned to a new 2-dimension array in the method, the original array does not change. Therefore, there should be another lo...
	In-place Solution
	By using the relation "matrix[i][j] = matrix[n-1-j][i]", we can loop through the matrix.

	28 Triangle
	Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
	The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
	This solution gets wrong answer! I will try to make it work later.
	28 Triangle

	Bottom-Up (Good Solution)
	We can actually start from the bottom of the triangle.

	29 Distinct Subsequences Total
	Given a string S and a string T, count the number of distinct subsequences of T in S.
	Java Solution 1
	Let W(i, j) stand for the number of subsequences of S(0, i) in T(0, j). If S.charAt(i) == T.charAt(j), W(i, j) = W(i-1, j-1) + W(i-1,j); Otherwise, W(i, j) = W(i-1,j).
	29 Distinct Subsequences Total

	Java Solution 2
	Do NOT write something like this, even it can also pass the online judge.

	30 Maximum Subarray
	Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
	This is a wrong solution, check out the discussion below to see why it is wrong. I put it here just for fun.
	Dynamic Programming Solution
	The changing condition for dynamic programming is "We should ignore the sum of the previous n-1 elements if nth element is greater than the sum."

	Simple Solution
	Mehdi provided the following solution in his comment.

	31 Maximum Product Subarray
	Find the contiguous subarray within an array (containing at least one number) which has the largest product.
	63 | 181
	Java Solution 2 - Dynamic Programming
	This is similar to maximum subarray. Instead of sum, the sign of number affect the product value.
	Time is O(n).

	32 Remove Duplicates from Sorted Array
	Given a sorted array, remove the duplicates in place such that each element appear only once and return the new length. Do not allocate extra space for another array, you must do this in place with constant memory.
	Solution 1
	Solution 2
	32 Remove Duplicates from Sorted Array

	Solution 3
	If we only want to count the number of unique elements, the following method is good enough.

	33 Remove Duplicates from Sorted Array II
	Follow up for "Remove Duplicates": What if duplicates are allowed at most twice? For example, given sorted array A = [1,1,1,2,2,3], your function should return length
	Given the method signature "public int removeDuplicates(int[] A)", it seems that we should write a method that returns a integer and that’s it. After typing the following solution:
	33 Remove Duplicates from Sorted Array II

	Online Judge returns:
	Correct Solution
	We can not change the given array’s size, so we only change the first k elements of the array which has duplicates removed.

	Better Solution

	34 Longest Substring Without Repeating Characters
	The first solution is like the problem of "determine if a string has all unique characters" in CC 150. We can use a flag array to track the existing characters for the longest substring without repeating characters.
	34 Longest Substring Without Repeating Characters

	Java Solution 2
	This solution is from Tia. It is easier to understand than the first solution.
	Consider the following simple example.
	When loop hits the second "a", the HashMap contains the following:

	35 Longest Substring Which Contains 2 Unique Characters
	Naive Solution
	Here is a naive solution. It works. Basically, it has two pointers that track the start of the substring and the iteration cursor.
	35 Longest Substring Which Contains 2 Unique Characters

	Scalable Solution

	36 Palindrome Partitioning
	Problem
	Java Solution 1
	36 Palindrome Partitioning

	Dynamic Programming
	The dynamic programming approach is very similar to the problem of longest palin- drome substring.

	37 Reverse Words in a String
	Given an input string, reverse the string word by word.
	This problem is pretty straightforward. We first split the string to words array, and then iterate through the array and add each element to a new string. Note: String- Builder should be used to avoid creating too many Strings. If the string is very...

	38 Find Minimum in Rotated Sorted Array
	Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
	When we search something from a sorted array, binary search is almost a top choice. Binary search is efficient for sorted arrays.
	If we pick the middle element, we can compare the middle element with the left-end element. If middle is less than leftmost, the left half should be selected; if the middle is greater than the leftmost, the right half should be selected. Using simple ...
	Java Solution
	Define a helper function, otherwise, we will need to use Arrays.copyOfRange() func- tion, which may be expensive for large arrays.

	39 Find Minimum in Rotated Sorted Array II
	Problem
	Follow up for "Find Minimum in Rotated Sorted Array": What if duplicates are al- lowed?

	Java Solution
	This is a follow-up problem of finding minimum element in rotated sorted array with- out duplicate elements. We only need to add one more condition, which checks if the left-most element and the right-most element are equal. If they are we can simply ...

	40 Find Peak Element
	A peak element is an element that is greater than its neighbors. Given an input array where num[i] = num[i+1], find a peak element and return its index. The array may contain multiple peaks, in that case return the index to any one of the peaks is fine.
	Java Solution

	41 Min Stack
	Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
	Java Solution

	42 Majority Element
	We can sort the array first, which takes time of nlog(n). Then scan once to find the longest consecutive substrings.
	Java Solution 2 - Much Simpler
	Thanks to SK. His/her solution is much efficient and simpler. Since the majority al- ways take more than a half space, the middle element is guaranteed to be the majority. Sorting array takes nlog(n). So the time complexity of this solution is nlog(n)...

	43 Combination Sum
	Given a set of candidate numbers (C) and a target number (T), find all unique combi- nations in C where the candidate numbers sums to T. The same repeated number may be chosen from C unlimited number of times.
	The first impression of this problem should be depth-first search(DFS). To solve DFS problem, recursion is a normal implementation.
	Java Solution

	44 Best Time to Buy and Sell Stock
	Say you have an array for which the ith element is the price of a given stock on day i.
	The naive approach exceeds time limit.
	Efficient Approach
	Instead of keeping track of largest element in the array, we track the maximum profit so far.

	45 Best Time to Buy and Sell Stock II
	Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete as many trans- actions as you like (ie, buy one and sell one share of the stock multiple times). H...
	This problem can be viewed as finding all ascending sequences. For example, given 5, 1, 2, 3, 4, buy at 1 & sell at 4 is the same as buy at 1 &sell at 2 & buy at 2& sell at 3 & buy at 3 & sell at 4.
	Java Solution

	46 Best Time to Buy and Sell Stock III
	Say you have an array for which the ith element is the price of a given stock on day i.
	Comparing to I and II, III limits the number of transactions to 2. This can be solve by "devide and conquer". We use left[i] to track the maximum profit for transactions before i, and use right[i] to track the maximum profit for transactions after i. ...
	Java Solution

	47 Best Time to Buy and Sell Stock IV
	Problem
	Say you have an array for which the ith element is the price of a given stock on day i.Design an algorithm to find the maximum profit. You may complete at most k transactions.

	Analysis
	This is a generalized version of Best Time to Buy and Sell Stock III. If we can solve this problem, we can also use k=2 to solve III.
	We track two arrays - local and global. The local array tracks maximum profit of j transactions & the last transaction is on ith day. The global array tracks the maximum profit of j transactions until ith day.

	Java Solution - 2D Dynamic Programming
	Java Solution - 1D Dynamic Programming
	The solution above can be simplified to be the following:

	48 Longest Common Prefix
	Problem
	Analysis
	Java Solution

	49 Largest Number
	Problem
	Given a list of non negative integers, arrange them such that they form the largest number.

	Analysis
	Java solution
	89 | 181

	50 Combinations
	Problem
	Given two integers n and k, return all possible combinations of k numbers out of 1 ... n.

	Java Solution 1 (Recursion)
	This is my naive solution. It passed the online judge. I first initialize a list with only one element, and then recursively add available elements to it.
	50 Combinations

	Java Solution 2 - DFS

	51 Compare Version Numbers
	Problem
	Compare two version numbers version1 and version2. If version1 >version2 return 1, if version1 <version2 return -1, otherwise return 0.
	Here is an example of version numbers ordering:

	Java Solution
	The tricky part of the problem is to handle cases like 1.0 and 1. They should be equal.

	52 Gas Station
	Problem
	There are N gas stations along a circular route, where the amount of gas at station i is gas[i].
	Return the starting gas station’s index if you can travel around the circuit once, otherwise return -1.

	Analysis
	To solve this problem, we need to understand: 1) if sum of gas[] >= sum of cost[], then there exists a start index to complete the circle. 2) if A can not read C in a the sequence of A–>B–>C, then B can not make it either.

	Java Solution

	53 Candy
	Problem
	There are N children standing in a line. Each child is assigned a rating value. You are giving candies to these children subjected to the following requirements:

	Java Solution
	This problem can be solved in O(n) time.

	54 Jump Game
	Problem
	Java Solution
	We can track the maximum length a position can reach. The key to solve this problem is to find 2 conditions: 1) the position can not reach next step (return false) , and 2) the maximum reach the end (return true).

	55 Pascal’s Triangle
	Problem Given numRows, generate the first numRows of Pascal’s triangle. For example, given numRows = 5, the result should be:
	Java Solution

	56 Container With Most Water
	Problem
	Analysis
	Initially we can assume the result is 0. Then we scan from both sides. If leftHeight

	Java Solution

	57 Count and Say
	Problem
	The count-and-say sequence is the sequence of integers beginning as follows: 1, 11, 21, 1211, 111221, ...

	Java Solution
	The problem can be solved by using a simple iteration. See Java solution below:

	58 Repeated DNA Sequences
	Problem
	All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACGAATTCCG". When studying DNA, it is sometimes useful to identify repeated sequences within the DNA.

	Java Solution
	The key to solve this problem is that each of the 4 nucleotides can be stored in 2 bits. So the 10-letter-long sequence can be converted to 20-bits-long integer. The following is a Java solution. You may use an example to manually execute the program ...

	59 Add Two Numbers
	The problem:
	This is a simple problem. It can be solved by doing the following:
	• Handle the situation that one list is longer than the other
	Solution 1
	59 Add Two Numbers
	59 Add Two Numbers (1)

	Solution 2
	There is nothing wrong with solution 1, but the code is not readable. We can refactor the code and make it much shorter and cleaner.

	Quesion
	What is the digits are stored in regular order instead of reversed order?

	60 Reorder List
	The problem:
	Solution
	This problem can be solved by doing the following:
	• Reverse the order of the second list
	The following code is a complete runnable class with testing.
	105 | 181
	60 Reorder List
	60 Reorder List (1)

	Takeaway Messages from This Problem
	The three steps can be used to solve other problems of linked list. A little diagram may help better understand them.
	Merge List:

	61 Linked List Cycle
	Leetcode Problem: Linked List Cycle
	61 Linked List Cycle

	Accepted Approach
	Use fast and low pointer. The advantage about fast/slow pointers is that when a circle is located, the fast one will catch the slow one for sure.

	62 Copy List with Random Pointer
	Problem:
	We can solve this problem by doing the following steps:
	• copy random pointers for all newly created nodes
	First Attempt (Wrong)
	What is wrong with the following code?
	62 Copy List with Random Pointer

	The code above seems totally fine. It follows the steps designed. But it has run-time errors. Why?

	Correct Solution
	The break list part above move pointer 2 steps each time, you can also move one at a time which is simpler, like the following:

	Correct Solution Using HashMap
	From Xiaomeng’s comment below, we can use a HashMap which makes it simpler.

	63 Merge Two Sorted Lists
	Problem:
	Java Solution

	64 Merge k Sorted Lists
	Java Solution

	65 Remove Duplicates from Sorted List
	Given a sorted linked list, delete all duplicates such that each element appear only once.
	The key of this problem is using the right loop condition. And change what is nec- essary in each loop. You can use different iteration conditions like the following 2
	Solution 1
	Solution 2

	66 Partition List
	Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
	The following is a solution I write at the beginning. It contains a trivial problem, but it took me a long time to fix it.
	66 Partition List

	Correct Solution
	The problem of the first solution is that the last node’s next element should be set to null.

	67 LRU Cache
	Problem
	Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

	Java Solution
	The key to solve this problem is using a double linked list which enables us to quickly move nodes.
	67 LRU Cache
	67 LRU Cache (1)

	68 Intersection of Two Linked Lists
	Problem
	Write a program to find the node at which the intersection of two singly linked lists begins.

	Java Solution
	First calculate the length of two lists and find the difference. Then start from the longer list at the diff offset, iterate though 2 lists and find the node.

	69 Java PriorityQueue Class Example
	The following examples shows the basic operations of PriorityQueue such as offer(), peek(), poll(), and size().
	Output:
	Example of Solving Problems Using PriorityQueue

	70 Solution for Binary Tree Preorder Traversal in Java
	Preorder binary tree traversal is a classic interview problem about trees. The key to solve this problem is to understand the following:
	• Use Stack from Java Core library
	obvious.

	71 Solution of Binary Tree Inorder Traversal in Java
	The key to solve inorder traversal of binary tree includes the following:
	• Use a stack to track nodes

	72 Solution of Iterative Binary Tree Postorder Traversal in Java
	The key to to iterative postorder traversal is the following:
	• Find the relation between the previously visited node and the current node
	As we go down the tree, check the previously visited node. If it is the parent of the current node, we should add current node to stack. When there is no children for current node, pop it from stack. Then the previous node become to be under the cur...

	73 Validate Binary Search Tree
	Problem:
	Assume a BST is defined as follows:
	• The right subtree of a node contains only nodes with keys greater than the node’s key.
	Java Solution

	74 Flatten Binary Tree to Linked List
	Given a binary tree, flatten it to a linked list in-place. For example, Given
	The flattened tree should look like:
	Java Solution

	75 Path Sum
	Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
	75 Path Sum

	Add all node to a queue and store sum value of each node to another queue. When it is a leaf node, check the stored sum value.
	Java Solution 2 - Recursion

	76 Construct Binary Tree from Inorder and Postorder Traversal
	This problem can be illustrated by using a simple example.
	From the post-order array, we know that last element is the root. We can find the root in in-order array. Then we can identify the left and right sub-trees of the root from in-order array.
	Java Solution

	77 Convert Sorted Array to Binary Search Tree
	Java Solution

	78 Convert Sorted List to Binary Search Tree
	Java Solution

	79 Minimum Depth of Binary Tree
	Given a binary tree, find its minimum depth.
	Java Solution

	80 Binary Tree Maximum Path Sum
	Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. For example: Given the below binary tree,
	Java Solution 1
	Java Solution 2
	We can also use an array to store value for recursive methods.

	81 Balanced Binary Tree
	Given a binary tree, determine if it is height-balanced.
	Java Solution

	82 Symmetric Tree
	Problem
	Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
	But the following is not:

	Java Solution - Recursion
	This problem can be solve by using a simple recursion. The key is finding the con- ditions that return false, such as value is not equal, only one node(left or right) has value.

	83 Clone Graph Java
	LeetCode Problem:
	• A queue is used to do breath first traversal.
	It would be helpful if you draw a diagram and visualize the problem.
	83 Clone Graph Java

	84 How Developers Sort in Java?
	If it is a collection, use Collections.sort() method.
	If it is an array, use Arrays.sort() method.
	84 How Developers Sort in Java?

	Using Sorted Data Structures
	If it is a list or set, use TreeSet to sort.
	If it is a map, use TreeMap to sort. TreeMap is sorted by key.

	Bad Practices
	There are still bad practices, such as using self-defined sorting algorithm. Take the code below for example, not only the algorithm is not efficient, but also it is not

	85 Solution Merge Sort LinkedList in Java
	LeetCode - Sort List:
	• Break the list to two in the middle
	• Merge the two sub lists
	85 Solution Merge Sort LinkedList in Java
	85 Solution Merge Sort LinkedList in Java (1)

	Output:

	86 Quicksort Array in Java
	Quicksort is a divide and conquer algorithm. It first divides a large list into two smaller sub-lists and then recursively sort the two sub-lists. If we want to sort an array without any extra space, Quicksort is a good option. On average, time comple...
	• Select a pivot, normally the middle one
	• Recursively sort left part and right part
	Output:
	The mistake I made is selecting the middle element. The middle element is not (low+high)/2, but low + (high-low)/2. For other parts of the programs, just follow the

	87 Solution Sort a linked list using insertion sort in Java
	Insertion Sort List:
	This is my accepted answer for LeetCode problem - Sort a linked list using insertion sort in Java. It is a complete program.
	Code:
	87 Solution Sort a linked list using insertion sort in Java

	Output:

	88 Maximum Gap
	Problem
	Given an unsorted array, find the maximum difference between the successive ele- ments in its sorted form.

	Java Solution 1 - Sort
	A straightforward solution would be sorting the array first (O(nlogn) and then finding the maximum gap. The basic idea is to project each element of the array to an array of
	buckets. Each bucket tracks the maximum and minimum elements. Finally, scanning the bucket list, we can get the maximum gap.

	Java Solution 2 - Bucket Sort
	We can use a bucket-sort like algorithm to solve this problem in time of O(n) and space O(n).

	89 Iteration vs. Recursion in Java
	Recursion
	Consider the factorial function: n!=n*(n-1)*(n-2)*...*1
	Program 1:
	In order to run this program, the computer needs to build up a chain of multipli- cations: factorial(n) factorial(n-1) factorial(n-2) ... factorial(1). Therefore, the computer has to keep track of the multiplications to be performed l...

	Iteration
	A different perspective on computing factorials is by first multiplying 1 by 2, then multiplying the result by 3, then by 4, and so on until n. More formally, the program can use a counter that counts from 1 up to n and compute the product simultaneou...

	Recursion vs Iteration
	Compared the two processes, we can find that they seem almost same, especially in term of mathematical function. They both require a number of steps proportional to n to compute n!. On the other hand, when we consider the running processes of the two ...

	Tree recursion
	As described above, tree recursion happens when the amount of information grows exponentially with the input. For instance, consider the sequence of Fibonacci num-
	bers defined as follows:
	A recursive program can be immediately written as: Program 3:
	Therefore, to compute fib(5), the program computes fib(4) and fib(3). To computer fib(4), it computes fib(3) and fib(2). Notice that the fib procedure calls itself twice at the last line. Two observations can be obtained from the definition and the pr...
	• This is a bad way to compute Fibonacci numbers because it does redundant computation. Computing the running time of this procedure is beyond the scope of this article, but one can easily find that in books of algorithms, which is O(phi(n)). Thus, th...
	Program 4:

	90 Edit Distance in Java
	From Wiki:
	There are three operations permitted on a word: replace, delete, insert. For example, the edit distance between "a" and "b" is 1, the edit distance between "abc" and "def" is
	Let dp[i][j] stands for the edit distance between two strings with length i and j, i.e., word1[0,...,i-1] and word2[0,...,j-1]. There is a relation between dp[i][j] and dp[i-1][j-1]. Let’s say we transform from one string to another. The first string ...
	• if x == y, then dp[i][j] == dp[i-1][j-1]
	• if x != y, and we delete x for word1, then dp[i][j] = dp[i-1][j] + 1
	• When x!=y, dp[i][j] is the min of the three situations.
	Java Code
	After the analysis above, the code is just a representation of it.

	91 Single Number
	The problem:
	Java Solution

	92 Single Number II
	Problem
	Java Solution
	This problem is similar to Single Number.

	93 Twitter Codility Problem Max Binary Gap
	Problem: Get maximum binary Gap.
	Java Solution

	94 Number of 1 Bits
	Problem
	Write a function that takes an unsigned integer and returns the number of ’1’ bits it has (also known as the Hamming weight).

	Java Solution

	95 Reverse Bits
	Problem
	Reverse bits of a given 32 bits unsigned integer.

	Java Solution

	96 Permutations
	Given a collection of numbers, return all possible permutations.
	We can get all permutations by the following steps:
	96 Permutations

	Java Solution 2
	We can also recursively solve this problem. Swap each element with each element after it.

	97 Permutations II
	Given a collection of numbers that might contain duplicates, return all possible unique permutations.
	Java Solution 1
	97 Permutations II

	Java Solution 2
	Use set to maintain uniqueness:

	98 Permutation Sequence
	The set [1,2,3,. . . ,n] contains a total of n! unique permutations.
	Java Solution 1
	98 Permutation Sequence

	Java Solution 2

	99 Generate Parentheses
	Given n pairs of parentheses, write a function to generate all combinations of well- formed parentheses.
	Read the following solution, give n=2, walk though the code. Hopefully you will quickly get an idea.

	100 Reverse Integer
	LeetCode - Reverse Integer:
	Efficient Approach
	Actually, this can be done by using the following code.
	100 Reverse Integer

	Succinct Solution
	This solution is from Sherry, it is succinct and it is pretty.

	Handle Out of Range Problem
	As we form a new integer, it is possible that the number is out of range. We can use the following code to assign the newly formed integer. When it is out of range, throw an exception.

	101 Palindrome Number
	Problems related with numbers are frequently solved by / and
	Java Solution

	102 Pow(x, n)
	Problem:
	First of all, assuming n is not negative, to calculate x to the power of n, we can simply multiply x n times, i.e., x * x * ... * x. The time complexity is O(n). The implementation is as simple as:
	Recursive Method
	Naturally, we next may think how to do it in O(logn). We have a relation that xnˆ = xˆ(n/2) * xˆ(n/2) * xˆ(n
	102 Pow(x, n)

	Accepted Solution
	The accepted solution is also recursive, but does division first. Time complexity is O(nlog(n)). The key part of solving this problem is the while loop.
	102 Pow(x, n)

	Best Solution
	The most understandable solution I have found so far.

