JAVA 9
JShell

Shell Agenda

1) Introduction to the JSRell.........ceeeeeeiiiiiiiiierreceereeteeeeennneeeeeeeeeenensssseeesseeeeennnnnsnnes
2) Getting Started with JShell........ccoereeeiiiiieiieiirrceieeeeeeeeennneeeeeeeeeennnnssseesseeeennnns
3) Getting Help from the JShelleeeeiciiieiiiireeeieeeeeeeeeeeeennsneeeeeeeeeeennsssseeesseeeennnns
4) Understanding JShell SNIPPets.....cccrriiiieeeiietennnriieeeeeeeeeeennsseeeeeeeeeeennsssseesseeeeesnnns
5) Editing and Navigating Code SNIPPELSccceereeeemnrreeereereeeennnnreeereeeeeeennnssseeseeeeeennns
6) Working with JShell Variables.............ueeeeeeeeeeeennennennnnnnnnnennsnnmnnnsnmmsssmmssssssssssssssnnes
7) Working with JShell Methodseeeeeeeeeeeneeeneennnnnnnnnnnnnnnsmnnnmmsmmmmssmmsssssssssssnnes
8) Using An External Editor with JShelleeeeeeeeeeeeeeeeeeeeeeeeeeeeeennnenennnnenennnennennnnnnne
9) Using classes,interfaces and enum with JShell.............eueeeeeeeeeeeeeeeeeeeeeeeenenennnnnnn.
10) Loading and Saving Snippets in JShell..........cccoiiiiiiiiiiiiiiiiereeseeeeeeee
11) Using Jar Files in the JShellcoo i
12) How to customize JShell Startupcccceveiiiiiiiiiiiiiiccrrrrrrrrrrrrrreeeeeeeseee e eeeene

13) Shortcuts and Auto-Completion of Commands........c.cccceeviiiiiiiiiiiiiiininiicncceeceeeeeeenn,

UNIT 1: Introduction to the JShell

Jshell is also known as Interactive console.
JShell is Java's own REPL Tool.

REPL means =»Read,Evaluate,Print and Loop

By using this tool we can execute java code snippets and we can get immediate results.
For beginners it is very good to start programming in fun way.

By using this jshell we can test and execute java expressions,statements,methods,classes etc.It is
useful for testing small code snippets very quickly,which can be plugged into our main coding
based on our requirement.

Prior to Java 9 we cannot execute a single statement,expression,methods without full pledged

classes. But in Java 9 with JShell we can execute any small piece of code without having complete
class structure.

It is not new thing in Java. It is already there in other languages like Python,Swift,Lisp,Scala,Ruby
etc..

Python 2> IDLE
Apple's Swift Programming Language - PlayGround

Limitiations of JShell:

1. JShell is not meant for Main Coding.We can use just to test small coding snippets,which can be
used in our Main Coding.

2. JShell is not replacement of Regular Java IDEs like Eclpise,NetBeans etc

3. It is not that much impressed feature. All other languages like Python,LISP,Scala,Ruby,Swift etc
are already having this REPL tools

UNIT-2: Getting Started with JShell

Starting and Stopping JShell:

Open the jshell from the command prompt in verbose mode
jshell -v

[Command Prompt

D:\durga _classes>jshell -v
| Welcome to IShell -- Version 9
| For an introduction type: /help intro

jshell> /exit
| Goodbye

D:\durga_classes>,

| Foran introduction type: /help intro

How to exit jshell:

jshell> /exit
| Goodbye

Note: Observe the difference b/w with -v and without -v (verbose mode)

D:\durga_classes>jshell -v
| Welcome to JShell -- Version 9
| Foran introduction type: /help intro

Note: If any information displaying on the jshell starts with '|', it is the information to the
programmer from the jshell

jshell> 10+20
$1==>30
| created scratch variable $1 : int

jshell>20-30*6/2
$2==>-70
| created scratch variable $2 : int

jshell> System.out.printin("DURGASOFT")
DURGASOFT

Here if we observe the output not starts with | b'z it is not information from the Jshell.

Note: Terminating semicolons are automatically added to the end of complete snippet by JShell if
not entered. .

jshell> Math.sqrt(4)
$4==>2.0
| created scratch variable $4 : double

jshell> Math.max(10,20)
$5==>20
| created scratch variable $5 : int

jshell> Math.random()
$6 ==>0.6956946870985563
| created scratch variable $6 : double

jshell> Math.random()
$7 ==>0.3657412865477785
| created scratch variable $7 : double

jshell> Math.random()
$8 ==>0.8828801968574324
| created scratch variable $8 : double

Note: We are not required to import java.lang package, b'z by default available.
Can you check whether the following will work or not?

jshell> ArrayList<String> | = new ArrayList<String>();
1==>]
| created variablel: ArrayList<String>

Note: The following packages are bydefault available to the Jshell and we are not required to
import. We can check with /imports command

jshell> /imports
| import java.io.*

| import java.math.*

| import java.net.*

| import java.nio.file.*

| import java.util.*

| import java.util.concurrent.*
| import java.util.function.*

| import java.util.prefs.*

| import java.util.regex.*

| import java.util.stream.*

jshell> ArrayList<String> I=new ArrayList<String>();
1==>]

jshell> l.add("Sunny");l.add("Bunny");l.add("Chinny");
$2 ==> true
$3 ==> true
$4 ==> true

jshell> 1
I ==> [Sunny, Bunny, Chinny]

jshell> LisEmpty()
$6 ==> false

jshell> l.get(2)
$7 ==> "Chinny"

jshell> l.get(10)
| java.lang.IndexOutOfBoundsException thrown: Index 10 out-of-bounds for length 3

jshell> l.size()
$9==>3

jshell> if(L.isEmpty()) System.out.printin("Empty");else System.out.printin("Not Empty");
Not Empty

jshell> for(int i =0;i<10;i=i+2)System.out.printin(i)

0o A~NO

Note: Interlly jshell having java compiler which is responsible to check syntax.If any violation we
will get Compile time error which is exactly same as normal compile time errors.

jshell> System.out.printin(x+y)
| Error:

| cannot find symbol

| symbol: variable x

| System.out.printin(x+y)

| A

| Error:

| cannot find symbol

| symbol: variabley

| System.out.printin(x+y)

jshell> Sytsem.out.printin("Durga")
| Error:

| package Sytsem does not exist

| Sytsem.out.printin("Durga")

Note: In our program if there is any chance of getting Checked exceptions compulsory we required
to handle either by try-catch or by throws keyword. Otherwise we will get Compiletime error.

Eg:

1) import java.io.*;
2) class Test

3){
4) public static void main(String[] args)

5) |

6) PrintWriter pw=new PrintWriter("abc.txt");
7) pw.printin("Hello");

8 }

9) }

D:\durga_classes>javac Test.java
Test.java:6: error: unreported exception FileNotFoundException; must be caught or declared to be
thrown

PrintWriter pw=new PrintWriter("abc.txt");

But in the case of Jshell, jshell itself will takes care of these and we are not required to use try-
catch or throws. Thanks to Jshell.

jshell> PrintWriter pw=new PrintWriter("abc.txt");pw.printin("Hello"); pw.flush();
pw ==> java.io.PrintWriter@e25b2fe

Conclusions:

1. From the jshell we can execute any expression,any java statement.

2. Most of the packages are not required to import to the Jshell b'z by default already available to
the jshell.

3. Internally jshell use java compiler to check syntaxes

4. If we are not handling any checked exceptions we wont get any compile time errors,b'z jshell
will takes care.

UNIT - 3: Getting Help from the JShell

If You Cry For Help ...JShell will provide everything.

JShell can provide complete information about available commands with full documentation,and
how to use each command and what are various options are available etc..

Agenda:

1) To know list of options allowed with jshell:

Type jshell --help from normal command prompt

2) To know the version of jshell:

Type jshell --version from normal command prompt
3) To know introduction of jshell:

jshell> /help intro
4) For List of commands:

type /help from jshell

5) To getinformation about a particular command:

jshell>/help commandname

6) To get just names of all commands without any description:

just type / followed by tab
7) To know the list of options available for a command
jshell>/command - tab

jshell> /list -
-all -history -start

1) To know list of options allowed with jshell

Type jshell --help from normal command prompt

D:\durga_classes>jshell --help
Usage: jshell <options> <load files>
where possible options include:
--class-path <path> Specify where to find user class files
--module-path <path> Specify where to find application modules
--add-modules <module>(,<module>)*
Specify modules to resolve, or all modules on the
module path if <module> is ALL-MODULE-PATHs
--startup <file> One run replacement for the start-up definitions
--no-startup Do not run the start-up definitions
--feedback <mode> Specify the initial feedback mode. The mode may be
predefined (silent, concise, normal, or verbose) or
previously user-defined

-q Quiet feedback. Same as: --feedback concise
-s Really quiet feedback. Same as: --feedback silent
-v Verbose feedback. Same as: --feedback verbose
-J<flag> Pass <flag> directly to the runtime system.

Use one -J for each runtime flag or flag argument
-R<flag> Pass <flag> to the remote runtime system.

Use one -R for each remote flag or flag argument
-C<flag> Pass <flag> to the compiler.

Use one -C for each compiler flag or flag argument
--version Print version information and exit
--show-version Print version information and continue
--help Print this synopsis of standard options and exit

--help-extra, -X Print help on non-standard options and exit

2) To know the version of jshell

Type jshell --version from normal command prompt

D:\durga_classes>jshell --version
jshell 9

3) To know introduction of jshell

jshell> /help intro
|

| intro

|

| The jshell tool allows you to execute Java code, getting immediate results.
| You can enter a Java definition (variable, method, class, etc), like: intx=8
| oralava expression, like: x + x

| oralava statement orimport.
I

I

I

I

I

I

These little chunks of Java code are called 'snippets'.

There are also jshell commands that allow you to understand and
control what you are doing, like: /list

For a list of commands: /help

4) For List of commands

type /help from jshell

jshell> /help

| Type alJava language expression, statement, or declaration.
| Ortype one of the following commands:

| /list [<xname or id>|-all|-start]

| list the source you have typed

| /edit <name orid>

| edit a source entry referenced by name orid

| /drop <name orid>

| delete a source entry referenced by name or id
| /save [-all|-history|-start] <file>

| Save snippet source to a file.

| /open <file>

| open a file as source input

| /vars [<name or id>]|-all|-start]

| list the declared variables and their values

| /methods [<name or id>|-all|-start]

| list the declared methods and their signatures
| /types [<name orid>|-all|-start]

| list the declared types

| /imports

| list the imported items

| /exit

| exitjshell

| /env [-class-path <path>] [-module-path <path>] [-add-modules <modules>] ...

~10

| view or change the evaluation context

| /reset [-class-path <path>] [-module-path <path>] [-add-modules <modules>]...
| reset jshell

| /reload [-restore] [-quiet] [-class-path <path>] [-module-path <path>]...
| reset and replay relevant history -- current or previous (-restore)

| /history

| history of what you have typed

| /help [<command>|<subject>]

| get information about jshell

| /set editor|start|feedback| mode|prompt|truncation|format ...

| set jshell configuration information

| /? [<command>|<subject>]

| getinformation about jshell

| /!

| re-run last snippet

| /<id>

| re-run snippet by id

| /-<n>

re-run n-th previous snippet

For more information type '/help' followed by the name of a
command or a subject.
For example '/help /list' or'/help intro'.

Subjects:

intro
an introduction to the jshell tool
shortcuts
a description of keystrokes for snippet and command completion,
information access, and automatic code generation
context
the evaluation context options for /env /reload and /reset

5)To get information about a particular command

jshell>/help commandname

jshell> /help list

|
| /list

| Show the source of snippets, prefaced with the snippet id.

I
| /list
| List the currently active snippets of code that you typed or read with /fopen

~11 ~

| /list -start
List the automatically evaluated start-up snippets

[list -all
List all snippets including failed, overwritten, dropped, and start-up

List snippets with the specified name (preference for active snippets)

|

|

|

|

|

| /list <name>
|

|

| /st <id>

| List the snippet with the specified snippet id

To get Information about methods command

jshell> /help methods

I
| /methods

| List the name, parameter types, and return type of jshell methods.

|
| /methods

List the name, parameter types, and return type of the current active jshell methods

/methods <name>
List jshell methods with the specified name (preference for active methods)

I
I
I
I
I
| /methods <id>

| List the jshell method with the specified snippet id
I

I

I

I

I

I

/methods -start
List the automatically added start-up jshell methods

/methods -all
List all snippets including failed, overwritten, dropped, and start-up

6) To get just names of all commands without any description

just type / followed by tab

jshell> /

/! /? /drop /edit /env /exit /help
/history /imports /list /methods /open /reload /reset
[save [set /types /vars

<press tab again to see synopsis>

~12 ~

If we press tab again then we will get one line synopsis for every command:

jshell> /
/!

re-run last snippet

/-<n>
re-run n-th previous snippet

/<id>
re-run snippet by id

?

get information about jshell

/drop
delete a source entry referenced by name orid

/edit
edit a source entry referenced by name or id

/env
view or change the evaluation context

/exit
exit jshell

/help
get information about jshell

/history
history of what you have typed

[imports
list the imported items

[list
list the source you have typed

/methods
list the declared methods and their signatures

/open
open a file as source input

/reload
reset and replay relevant history -- current or previous (-restore)

[reset

~ 13 ~

reset jshell

/save
Save snippet source to a file.

/set
set jshell configuration information

[types
list the declared types

/vars
list the declared variables and their values

<press tab again to see full documentation>

If we press tab again then we can see full documentation of command one by one:

jshell> /
/!

Reevaluate the most recently entered snippet.
<press tab to see next command>

jshell> /

/-<n>

Reevaluate the n-th most recently entered snippet.
<press tab to see next command>

jshell> /

[<id>

Reevaluate the snippet specified by the id.

<press tab to see next command>

7) To know the list of options available for a command

jshell>/command - tab

jshell> /list -
-all -history -start

<press tab again to see synopsis>

jshell> /list -

~ 14 ~

If we press tab again then we will get synopsis:

jshell> /list -
list the source you have typed

<press tab again to see full documentation>
jshell> /list -

If we press tab again then we will get documentation:

jshell> /list -
Show the source of snippets, prefaced with the snippet id.

[list
List the currently active snippets of code that you typed or read with /open

/list -start
List the automatically evaluated start-up snippets

/[list -all
List all snippets including failed, overwritten, dropped, and start-up

/[list <name>
List snippets with the specified name (preference for active snippets)

[list <id>
List the snippet with the specified snippet id

~ 15 ~

Conclusions:

1) To know list of options allowed with jshell

Type jshell --help from normal command prompt

2) To know the version of jshell

Type jshell --version from normal command prompt

3) To know introduction of jshell

jshell> /help intro
4) For List of commands

type /help from jshell

5) To get information about a particular command

jshell>/help commandname

6) To get just names of all commands without any description

just type / followed by tab

7) To know the list of options available for a command

jshell>/command - tab

jshell> /list -
-all -history -start

~16 ~

UNIT - 4: Understanding JShell Snippets

What are Coding Snippets?

Everything what allowed in java is a snippet. It can be
Expression,Declaration,Statement,classe,interface,method,variable,import,...
We can use all these as snippets from jshell.

***But package declarations are not allowed from the jshell.

jshell> System.out.printin("Hello")
Hello

jshell> int x=10
x==>10
| created variable x : int

jshell> 10+20
$3==>30
| created scratch variable $3 : int

jshell> $3>x
$4 ==> true
| created scratch variable $4 : boolean

jshell> String s =10

| Error:

| incompatible types: int cannot be converted to java.lang.String
| Strings=10;

I AN

jshell> String s= "Durga"
s ==>"Durga"
| created variable s : String

jshell> public void m1()
WO
...> System.out.printin("hello");
>}

| created method mi()

jshell> m1()
hello

~17 ~

Note: We can use /list command to list out all snippets stored in the jshell memory with snippet
id.

jshell> /list

: System.out.printin("Hello")
: int x=10;

: 10+20

: $3>x

: String s= "Durga";

: public void m1()

{
System.out.printin("hello");

}
7 :ml()

AUV A WNBR

The numbers 1,2,3 are snippet id. In the future we can access the snippet with id directly.

Note: There are some snippets which will be executed automatically at the time jshell star-
tup,and these are called start-up snippets. We can also add our own snippets as start-up snippets.

We can list out all start-up snippets with command: /list -start
jshell> /list -start

sl :import java.io.*;

s2 : import java.math.*;

s3 : import java.net.*;

s4 : import java.nio.file.*;

s5 : import java.util.*;

s6 : import java.util.concurrent.*;
s7 :import java.util.function.*;
s8 : import java.util.prefs.*;

s9 : import java.util.regex.*;

s10 : import java.util.stream.*;

All these are default imports to the jshell.
We can list out all snippets by the command: /list -all
jshell> /list -all

sl :import java.io.*;

s2 : import java.math.*;

s3 : import java.net.*;

s4 : import java.nio.file.*;

s5 : import java.util.*;

s6 : import java.util.concurrent.*;
s7 : import java.util.function.*;

~ 18 ~

s8 : import java.util.prefs.*;
s9 : import java.util.regex.*;
s10 : import java.util.stream.*;
1: System.out.printin("Hello")
2 :int x=10;
3:10+20
4:$3>x
el : String s =10;
5 : String s= "Durga";
6 : public void m1()
{
System.out.printin("hello");

}
7 :ml()

We can access snhippets by using id directly.

jshell> /list 1
1: System.out.printin("Hello")
jshell> /list 1 2

1: System.out.printin("Hello")
2 :int x=10;

jshell> /list 15

1: System.out.printin("Hello")
5 : String s= "Durga";

We can also access snippets directly by using name.The name can be either variable name,class

name ,method name etc
jshell> /list m1
6 : public void m1()

{

System.out.printin("hello");

}
jshell> /list x
2:int x=10;
jshell> /list s

5 : String s= "Durga";

~ 19 ~

We can execute snippet directly by using id with the command: /id

jshell> /3

10+20

$8==>30

| created scratch variable $8 : int

jshell> /7
mil()
hello

We can use drop command to drop a snippet(Making it inactive)
We can drop snippet by name orid.

jshell> /list

: System.out.printin("Hello")
:int x=10;

:10+20

:$3>x

: String s= "Durga";

: public void m1()

{
System.out.printin("hello");
}

7 :mi()

8:10+20

9:mi()

AUV A WNBR

jshell> /drop $3
| dropped variable $3

jshell> /list

: System.out.printin("Hello")
:int x=10;

: $3>x

: String s= "Durga";

: public void m1()

{
System.out.printin("hello");
}

7 : mi()

8:10+20

9: mi()

AUV AN

jshell> /4
$3>x
| Error:

~20 ~

| cannot find symbol
| symbol: variable $3
| $3>x

Il\l\

Conclusions:

1. We can use /list command to list out all snippets stored in the jshell memory with snippet id.
jshell>/list

2. In the future we can access the snippet with id directly without retypinng whole snippet.
jshell>/list id

3. There are some snippets which will be executed automatically at the time jshell star-tup,and
these are called start-up snippets. We can list out all start-up snippets with command: /list -start

jshell> /list -start
We can also add our own snippets as start-up snippets.

4. The default start-up snippets are default imports to the jshell.

5.We can list out all snippets by the command: /list -all
jshell> /list -all

6. We can access snippets by using id directly.
jshell> /list 1

7. We can access snippets directly by using name.The name can be either variable name,class
name ,method name etc

jshell> /list m1

8. We can execute snippet directly by using id with the command: /id
jshell> /3

9. We can use drop command to drop a snippet(Making it inactive)
We can drop snippet by name or id.

jshell> /drop $3
Once we dropped a snippet,we cannot use otherwise we will get compile time error.

~21 ~

UNIT - 5: Editing and Navigating Code Snippets

We can list all our active snippets with /list command and we can list total history of our jshell

activities with /history command.
jshell> /list

1:int x=10;

2 : String s="Durga";

3 : System.out.printin("Hello");
4 : class Test{}

jshell> /history

int x=10;

String s="Durga";
System.out.printin("Hello");
class Test{}

/list

/history

1. By using down arrow and up arrow we can navigate through history.While navigating we can
use left and right arrows to move character by character with in the snippet.

2. We can Ctrl+A to move to the beginning of the line and Ctrl+E to move to the end of the line.

3. We can use Alt+B to move backward by one word and Alt+F to move forward by one word.

4. We can use Delete key to delete the character at the cursor. We can us Backspace to delete

character before the cursor.

5. We can use Ctrl+K to delete the text from the cursor to the end of line.

6. We can use Alt+D to delete the text from the cursor to the end of the word.

7. Ctrl+W to delete the text from cursor to the previous white space.

8. Ctrl+Y to paste most recently deleted text into the line.

9. Ctrl+R to Search backward through history

10. Ctrl+S to search forward through histroy

~ 22 ~

KEY ACTION

Up arrow Moves up one line, backward through
history

Down arrow Moves down one line, forward through
history

Left arrow Moves backward one character

Right arrow Moves forward one character

Ctrl+A Moves to the beginning of the line

Ctrl+E Moves to the end of the line

Alt+B Moves backward one word

Alt+F Moves forward one word

Delete Deletes the character at the cursor

Backspace Deletes the character before the cursor

Ctrl+K Deletes the text from the cursor to the end
of the line

Alt+D Deletes the text from the cursor to the end
of the word

Ctrl+W Deletes the text from the cursor to the
previous white space.

Ctrl+Y Pastes the most recently deleted text into
the line.

Ctrl+R Searches backward through history

Ctrl+S Searches forwards through history

~23 ~

UNIT - 6: Working with JShell Variables

After completing this JShell Variables session,we can answer the following:

1. What are various types of variables possible in jshell?

2. Is it possible to use scratch variable in our code?

3. Is it possible 2 variables with the same name in JShell?

4. If we are trying to declare a variable with the same name which is already available in JShell
then what will happen?

5. How to list out all active variables of jshell?

6. How to list out all active& in-active variables of jshell?

7. How to drop variables in the JShell?

8. What is the difference between print() and printf() methods?

In JShell,there are 2 types of variables

1. Explicit variables
2. Implicit variables or Scratch variables

Explicit variables:

These variables created by programmer explicitly based on our programming requirement.

Eg:

jshell>int x =10

x==>10

| created variable x : int
jshell> String s="Durga"
s ==>"Durga"

| created variable s : String

The variables x and s provided explicitly by the programmer and hence these are explicit variables.

Implicit Variables:

Sometimes JShell itself creates variables implicitly to hold temporary values,such type of variables
are called Implicit variables.

Eg:
jshell> 10+20

$3==>30
| created scratch variable $3 : int

~ 24 ~

jshell> 10<20
$4 ==> true
| created scratch variable $4 : boolean

The variables $3 and $4 are created by JShell and hence these are implicit variables.
Based on requirement we can use these scratch variables also.

jshell> $3+40
$5==>70
| created scratch variable $5 : int

If we are trying to declare a variable with the same name which is already available then old
variable will be replaced with new variable.i.e in JShell, variable overriding is possible.

In JShell at a time only one variable is possible with the same name.i.e 2 variables with the same
name is not allowed.

jshell> String x="DURGASOFT"

x ==>"DURGASOFT"

| replaced variable x : String

| update overwrote variable x : int

In the above case,int variable x is replaced with String variable x.

While declaring variables compulsory the types must be matched,otherwise we will get compile
time error.

jshell> String s1=true
| Error:
| incompatible types: boolean cannot be converted to java.lang.String

| String sl=true;
I N__N\

jshell> String s1="Hello"
s1==>"Hello"
| created variable sl : String

Note: By using /vars command we can list out type,name and value of all variables which are
created in JShell.
Instead of /vars we can also use /var,/va,/v

jshell> /help vars
|

| /vars

| List the type, name, and value of jshell variables.

| /vars
| List the type, name, and value of the current active jshell variables

~ 25 ~

| /vars <name>
| List jshell variables with the specified name (preference for active var
iables)

[vars <id>
List the jshell variable with the specified snippet id

|
|
|
|
| /vars-start

| List the automatically added start-up jshell variables
|

I

I

a

[vars -all
List all jshell variables including failed, overwritten, dropped, and st
rt-up

To List out All Active variables of JShell:

jshell> /vars

| String s ="Durga"

| int$3=30

| boolean $4 = true

| String x = "DURGASOFT"
| String s1="Hello"

To List out All Variables(both active and not-active):

jshell> /vars -all
| intx = (not-active)

| Strings="Durga"

| int$3=30

| boolean $4 = true

| String x = "DURGASOFT"
| String s1 = (not-active)

| String s1="Hello"

We can drop a variable by using /drop command

jshell> /vars

| Strings="Durga"

| int$3=30

| boolean $4 = true

| String x = "DURGASOFT"
| String s1="Hello"

jshell> /drop $3
| dropped variable $3

~ 26 ~

jshell> /vars
| Strings ="Durga"
| boolean $4 = true
| String x = "DURGASOFT"
| String s1="Hello"

We can create complex variables also

jshell>List<String> heroes=List.of("Ameer","Sharukh","Salman");
heroes ==> [Ameer, Sharukh, Salman]
| created variable heroes : List<String>

nn nn

jshell>List<String> heroines=List.of("Katrina","Kareena",
heroines ==> [Katrina, Kareena, Deepika]

| created variable heroines : List<String>

Deepika");

jshell> List<List<String>> I=List.of(heroes,heroines);
| ==> [[Ameer, Sharukh, Salman], [Katrina, Kareena, Deepika]]
| created variable I : List<List<String>>

jshell> /vars
| Strings ="Durga"

| boolean $4 = true

| String x = "DURGASOFT"

| String s1="Hello"

| List<String> heroes = [Ameer, Sharukh, Salman]

| List<String> heroines = [Katrina, Kareena, Deepika]

| List<List<String>> | = [[Ameer, Sharukh, Salman], [Katrina,Kareena, Deepikal]]

System.out.printin() vs System.out.printf() methods:

public class PrintStream

{
public void print(boolean);
public void print(char);
public void printin(boolean);
public void printin(char);
public PrintStream printf(String,Object...);
}

System.out.printin() method return type is void.
But System.out.printf() method return type is PrintStread object.On that PrintStream object we
can call printf() method again.

jshell> System.out.printin("Hello");
Hello

jshell> System.out.printf("Hello:%s\n","Durga")
Hello:Durga

~ 27 ~

$11 ==> java.io.PrintStream@10bdf5e5
| created scratch variable $11 : PrintStream

jshell> $11.printf("Hello")
Hello$12 ==> java.io.PrintStream@10bdf5e5
| created scratch variable $12 : PrintStream

jshell> /vars

| Strings ="Durga"

| boolean $4 = true

| String x = "DURGASOFT"

| String s1="Hello"

| List<String> heroes = [Ameer, Sharukh, Salman]

| List<String> heroines = [Katrina, Kareena, Deepika]
| List<List<String>> | = [[Ameer, Sharukh, Salman],
[Katrina, Kareena, Deepika]]

| PrintStream $11 = java.io.PrintStream@10bdf5e5
| PrintStream $12 = java.io.PrintStream@10bdf5e5

FAQs:

1. What are various types of variables possible in jshell?

2. Is it possible to use scratch variable in our code?

3. Is it possible 2 variables with the same name in JShell?

4. If we are trying to declare a variable with the same name which is already available in JShell
then what will happen?

5. How to list out all active variables of jshell?

6. How to list out all active& in-active variables of jshell?

7. How to drop variables in the JShell?

8. What is the difference between print() and printf() methods?

~ 28 ~

UNIT - 7: Working with JShell Methods

In the JShell we can create our own methods and we can invoke these methods multiple times
based on our requirement.

Eg:

jshell> public void m1()
O
...> System.out.printin("Hello");
>}

| created method mi()

jshell> m1()
Hello

jshell> public void m2()
O
...> System.out.printin("New Method");
>}

| created method m2()

jshell> m2()
New Method

In the JShell there may be a chance of multiple methods with the same name but different
argument types, and such type of methods are called overloaded methods.Hence we can declare
oveloaded methods in the JShell.

jshell> public void m1(){}
| created method mi()

jshell> public void m1(int i){}
| created method mi(int)

jshell> /methods
| void mi()
| void mi(int)

We can list out all methods information by using /methods command.

jshell> /help methods

|
| /methods

| List the name, parameter types, and return type of jshell methods.

|
| /methods

~ 29 ~

List the name, parameter types, and return type of the current active jshell methods

/methods <name>
List jshell methods with the specified name (preference for active methods)

I
I
I
I
|
| /methods <id>

| List the jshell method with the specified snippet id
|

|

|

|

I

I

/methods -start
List the automatically added start-up jshell methods

/methods -all
List all snippets including failed, overwritten, dropped, and start-up

jshell> /methods
| void mi()

| void m2()

| void mi(int)

If we are trying to declare a method with same signature of already existing method in JShell,then
old method will be overridden with new method(eventhough return types are different).

i.e in JShell at a time only one method with same signature is possible.

jshell> public void m1(int i){}
| created method mi(int)

jshell> public int m1(int i){return 10;}
| replaced method mi(int)

| update overwrote method mi(int)

jshell> /methods
| int mi(int)

jshell> /methods -all

| void mi(int)

| int mi(int)

In the JShell we can create more complex methods also.

Egl: To print the number of occurrences of specified character in the given String

1) 5: public void charCount(String s,char ch)

2) {

3) int count=0;

4) for(int i =0; i <s.length(); i++)
5) {

6) if(s.charAt(i)==ch)

~ 30 ~

7) {

8) count++;

9) }

10) }

11) System.out.printin("The number of occurrences:"+count);
12) }

jshell> charCount("Hello DurgaSoft",'o0')
The number of occurrences:2

jshell> charCount("Jajaja",'j')
The number of occurrences:2

Eg 2: To print the sum of given integers

1) 8: publicvoid sum(int... x)

2) {

3) int total=0;

4) for(int x1: x)

5) {

6) total=total+x1;

7) }

8) System.out.printin("The Sum:"+total);
9) }

jshell> sum(10,20)
The Sum:30

jshell> sum(10,20,30,40)
The Sum:100

In JShell,inside method body we can use undeclared variables and methods.But until declaring all
dependent variables and methods,we cannot invoke that method.

Egl: Usage of undeclared variable inside method body

jshell> public void m1()
WO
...> System.out.printin(x);
>}
| created method m1(), however, it cannot be invoked until variable x is declared

jshell> m1()
| attempted to call method m1() which cannot be invoked until variable x is declared

jshell> int x=10
x==>10

~ 31 ~

| created variable x : int
| update modified method m1()

jshell> m1()
10

Eg 2: Usage of undeclared method inside method body

jshell> public void m1()
O
> m2();
>}
| created method m1(), however, it cannot be invoked until method m2() is declared

jshell> m1()
| attempted to call method m1() which cannot be invoked until method m2() is declared

jshell> public void m2()
WO
...> System.out.printin("Hello DURGASOFT");
>}

| created method m2()

| update modified method mi()

jshell> m1()
Hello DURGASOFT

jshell> m2()
Hello DURGASOFT

We can drop methods by name with /drop command.If multiple methods with the same name
then we should drop by snippet id.

jshell> public void m1(){}
| created method mi()

jshell> public void m1(int i){}
| created method mi(int)

jshell> public void m2(){}
| created method m2()

jshell> public void m3(){}
| created method m3()

jshell> /methods

| void mi()
| void mi(int)

~ 32 ~

| void m2()
| wvoid m3()

jshell> /drop m3
| dropped method m3()

jshell> /methods
| void mi()

| void mi(int)

| void m2()

jshell> /drop m1

| The argument references more than one import, variable, method, or class.
| Use one of:

| /drop 1 : public void m1(){},

| /drop 2 : public void mi(int i){}

jshell> /methods
| void mi()

| void mi(int)

| void m2()

jshell> /list

1 : public void m1(){}
2 : public void m1(int i){}
3 : public void m2(){}

jshell> /drop 2
| dropped method mi(int)

jshell> /methods
| void mi()
| void m2()

FAQs:

1. Is it possible to declare methods in the JShell?

2. Is it possible to declare multiple methods with the same name in JShell?

3. Is it possible to declare multiple methods with the same signature in JShell?

4. If we are trying to declare a method with the same name which is already there in the JShell,but
with different argument types then what will happen?

5.1f we are trying to declare a method with the same signature which is already there in the
JShell,then what will happen?

6. Inside a method if we are trying to use a varaiable or method which is not yet declared then
what will happen?

7. How to drop methods in JShell?

8. If multiple methods with the same name then how to drop these methods?

~ 33 ~

UNIT - 8: Using An External Editor with JShell

It is very difficult to type lengthy code from JShell. To overcome this problem,JShell provide in-
built editor.

We can open inbuilt editor with the command: /edit
jshell> /edit
diagram(image) of inbuilt-editor

If we are not satisfied with JShell in-built editor ,then we can set our own editor to the JShell.For
this we have to use /set editor command.

Eg:

jshell> /set editor "C:\\WINDOWS\\system32\\notepad.exe"
jshell> /set editor "C:\\Program Files\\EditPlus\\editplus.exe"

How to Set Notepad as editor to JShell:

jshell> /set editor "C:\\WINDOWS\\system32\\notepad.exe"

| Editor set to: C:\WINDOWS\system32\notepad.exe

If we type /edit automatically Notepad will be openend.

jshell> /edit

But this way of setting editor is temporary and it is applicable only for current session.
If we want to set current editor as permanent,then we have to use the command

jshell> /set editor -retain
| Editor setting retained: C:\WINDOWS\system32\notepad.exe

How to set EditPlus as editor to JShell:

jshell> /set editor "C:\\Program Files\\EditPlus\\editplus.exe"
| Editor set to: C:\Program Files\EditPlus\editplus.exe

If we type /edit automatically EditPlus editor will be opened.

~ 34 ~

How to set default editor once again:

We have to type the following command from the jshell

jshell> /set editor -default
| Editor set to: -default

To make default editor as permanent:

jshell> /set editor -retain
| Editor setting retained: -default

Note: It is not recommended to set Intelli),Eclipse,NetBeans as JShell editors,b'z it increases
startup time and shutdown time of jshell.

FAQs:

1. How to open default editor of JShell?

2. How to configure our own editor to the JShell?

3. How to configure Notepad as editor to the JShell?

4. How to make our customized editor as permanent editor in the JShell?

~ 35 ~

UNIT - 9: Using classes,interfaces and enum with JShell

In the JShell we can declare classes,interfaces,enums also.
We can use /types command to list out our created types like classes,interfaces and enums.

jshell> class Student{}
| created class Student

jshell> interface Interf{}
| created interface Interf

jshell> enum Colors{}
| created enum Colors

jshell> /types

| class Student
| interface Interf
| enum Colors

But recommened to use editor to type lengthy classes,interfaces and enums.

1) 1: public class Student

2) {

3) private String name;

4) private int rollno;

5) Student(String name,int rollno)

6) |
7) this.name=name;
8) this.rollno=rollno;
9 }
10) public String getName()
11) {
12) return name;
13) }
14) publicint getRollno()
15) {
16) return rollno;
17) }
18) }
jshell> /edit

| created class Student

jshell> /types
| class Student

jshell> Student s=new Student("Durga",101);
s ==> Student@754ba872

~ 36 ~

| created variable s : Student

jshell> s.getName()
$3 ==>"Durga"
| created scratch variable $3 : String

jshell> s.getRollno()
$4==>101
| created scratch variable $4 : int

1) publicinterface Interf

2) {

3) public static void m1()

4 {

5) System.out.printin("interface static method");
6) }

7) }

8) enum Beer

9) {

10) KF("Sour"),KO("Bitter"),RC("Salty");
11) String taste;

12) Beer(String taste)

13) {
14) this.taste=taste;
15) }
16) public String getTaste()
17) {
18) return taste;
19) }
20) }
jshell> /edit

| created interface Interf
| created enum Beer

jshell> Interf.m1()
interface static method

jshell> Beer.KF.getTaste()

$8 ==>"Sour"
| created scratch variable $8 : String

~ 37 ~

UNIT — 10: Loading and Saving Snippets in JShell

We can load and save snippets from the file.

Assume all our required snippets are available in mysnippets.jsh. This file can be with any
extension like .txt,But recommended to use .jsh.

myshnippets.jsh:

String s="Durga";
public void m1()
{

System.out.printin("method defined in the file");

}
int x=10;

We can load all snippets of this file from the JShell with /open command as follows.
jshell> /list
jshell> /open mysnippets.jsh
jshell> /list
1: String s="Durga";

2 : public void m1()
{

System.out.printin("method defined in the file");

}
3 :int x=10;

Once we loaded snippets,we can use these loaded snippets based on our requirement.

jshell> m1()
method defined in the file

jshell>s
s ==>"Durga"
| value of s: String

jshell> x

x==>10
| value of x: int

~ 38 ~

Saving JShell snippets to the file:

We can save JShell snippets to the file with /save command.
jshell> /help save

/save <file>
Save the source of current active snippets to the file.

|
|
|
|
| /save -all <file>

| Save the source of all snippets to the file.

| Includes source including overwritten, failed, and start-up code.
I

I

I

I

I

I

/save -history <file>
Save the sequential history of all commands and snippets entered since jshell was launched.

/save -start <file>
Save the current start-up definitions to the file.

Note: If the specified file is not available then this save command itself will create that file.
jshell> /save active.jsh

jshell> /save -all all.jsh

jshell> /save -start start.jsh

jshell> /save -history history.jsh

jshell> /ex
| Goodbye

D:\>type active.jsh

int x=10;

X
System.out.printin("Hello");
public void m1(){}

D:\>type start.jsh

import java.io.*;

import java.math.*;

import java.net.*;

import java.nio.file.*;

import java.util.*;

import java.util.concurrent.*;
import java.util.function.*;
import java.util.prefs.*;
import java.util.regex.*;

~ 390 ~

import java.util.stream.*;

Note: Bydefault,all files will be created in current working directory. If we want in some other
location then we have to use absolute path(Full Path).

jshell> /save D:\\durga_classes\\active.jsh

How to Reload Previous state (session) of JShell:

We can reload previous session with /reload command so that all snippets of previous session will
be available in the current session.

jshell> /reload -restore

Eg:

jshell>int x=10
x==>10
| created variable x : int

jshell> 10+20
$2==>30
| created scratch variable $2 : int

jshell> System.out.printin("Hello");
Hello

jshell> /list

1:int x=10;
2:10+20
3 : System.out.printin("Hello");

jshell> /exit
| Goodbye

D:\>jshell -v
| Welcome to JShell -- Version 9
| Foran introduction type: /help intro

jshell> /reload -restore

| Restarting and restoring from previous state.
-:int x=10;

-:10+20

-: System.out.printin("Hello");

Hello

jshell> /list

~ 40 ~

1:int x=10;
2:10+20
3 : System.out.printin("Hello");

How to reset JShell State:

We can reset JShell state by using /reset command.

jshell> /help reset
I

| /reset

I
| Reset the jshell tool code and execution state:

| * All entered code is lost.

| * Start-up code is re-executed.

| * The execution state is restarted.

| Tool settings are maintained, as set with: /set ...
| Save any work before using this command.

Eg:

jshell> /list
1:int x=10;
2:10+20

3 : System.out.printin("Hello");

jshell> /reset
| Resetting state.

jshell> /list

~ 41 ~

UNIT - 11: Using Jar Files in the JShell

It is very easy to use external jar files in the jshell. We can add Jar files to the JShell in two ways.

1. From the Command Prompt
2. From the JShell Itself

1. Adding Jar File to the JShell from Command Prompt:

We have to open jshell with --class-path option.

D:\>jshell -v --class-path C:\oraclexe\app\oracle\product\11.2.0\server\jdbc\lib\ojdbc6.jar

Demo Program to get all employees information from oracle database:

mysnippets.jsh:

1) import java.sql.*;
2) public void getEmpinfo() throws Exception
3) {

4) Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","

scott","tiger");
5) Statement st=con.createStatement();
6) ResultSet rs=st.executeQuery("select * from employees");
7) while(rs.next())

8) |

9) System.out.printin(rs.getint(1)+".." +rs.getString(2)+".."+rs.getDouble(3)+".." +rs.getStr
ing(4));

10) }

11) con.close();

12) }

DaTabase info:

1) create Table employees(eno number,ename varchar2(10),esal number(10,2),eaddr varchar

2(10));
2) insert into employees values(100,'Sunny',1000,'Mumbai');
3) insertinto employees values(200,'Bunny',2000,'Hyd’);
4) insert into employees values(300,'Chinny',3000,'Hyd’);
5) insert into employees values(400,'Vinny',4000,'Delhi');

D:\>jshell -v --class-path C:\oraclexe\app\oracle\product\11.2.0\server\jdbc\lib\ojdbc6.jar
jshell> /open mysnippets.jsh

jshell> getEmplnfo()
100..Sunny..1000.0..Mumbai

~ 42 ~

200..Bunny..2000.0..Hyd
300..Chinny..3000.0..Hyd
400..Vinny..4000.0..Delhi

2.Adding Jar File to the JShell from JShell itself:

We can add External Jars to the jshell from the Jshell itself with /env command.

jshell> /env --class-path C:\oraclexe\app\oracle\product\11.2.0\server\jdbc\lib\ojdbcé.jar
| Setting new options and restoring state.

jshell> /open mysnippets.jsh

jshell> getEmpinfo()
100..Sunny..1000.0..Mumbai
200..Bunny..2000.0..Hyd
300..Chinny..3000.0..Hyd
400..Vinny..4000.0..Delhi

Note: Internally JShell will use environment variable CLASSPATH if we are not setting CLASSPATH
explicitly.

~ 43 ~

UNIT —12: How to customize JShell Startup

By default the following snippets will be executed at the time of JShell Startup.
jshell> /list -start

sl :import java.io.*;

s2 : import java.math.*;

s3 : import java.net.*;

s4 : import java.nio.file.*;

s5 : import java.util.*;

s6 : import java.util.concurrent.*;
s7 :import java.util.function.*;
s8 : import java.util.prefs.*;

s9 : import java.util.regex.*;

s10 : import java.util.stream.*;

We can customize these start-up snippets based on our requirement.
Assume our required start-up snippets are available in myStartup.jsh.

mystartup.jsh:

int x =10;
String s="DURGA";
System.out.printin("Hello Durga Welcome to JShell");

To provide these snippets as startup snippets we have to open JShell as follows
D:\>jshell -v --startup mystartup.jsh
Hello Durga Welcome to JShell
| Welcome to JShell -- Version 9
| For an introduction type: /help intro
jshell> /list -start
sl:intx=10;

s2 : String s="DURGA";
s3 : System.out.printin("Hello Durga Welcome to JShell");

Note: if we want DEFAULT import start-up snippets also then we have to open JShell as follows.
D:\>jshell -v --startup DEFAULT mystartup.jsh

Hello Durga Welcome to JShell

| Welcome to JShell -- Version 9

| For an introduction type: /help intro

jshell> /list

~ 44 ~

1:intx=10;
2 : String s="DURGA";
3 : System.out.printin("Hello Durga Welcome to JShell");

jshell> /list -start

sl :import java.io.*;

s2 : import java.math.*;

s3 : import java.net.*;

s4 : import java.nio.file.*;

s5 : import java.util.*;

s6 : import java.util.concurrent.*;
s7 :import java.util.function.*;
s8 : import java.util.prefs.*;

s9 : import java.util.regex.*;

s10 : import java.util.stream.*;

Note: To import all JAVASE packages (almost around 173 packages) at the time of startup we have
to open JShell as follows.

D:\>jshell -v --startup JAVASE
jshell> /list
jshell> /list -start

sl : import java.applet.*;

s2 : import java.awt.*;

s3 : import java.awt.color.*;

s172 : import org.xml.sax.ext.*;
s173 : import org.xml.sax.helpers.*;

Note: In addition to JAVASE, to provide our own snippets we have to open JShell as follows
D:\>jshell -v --startup JAVASE mystartup.jsh
Hello Durga Welcome to JShell
| Welcome to JShell -- Version 9
| For an introduction type: /help intro
jshell> /list
1:intx=10;
2 : String s="DURGA";
3 : System.out.printin("Hello Durga Welcome to JShell");

jshell> /list -start

sl :import java.applet.*;

~ 45 ~

s2 : import java.awt.*;
s3 : import java.awt.color.*;

s172 : import org.xml.sax.ext.*;
s173 : import org.xml.sax.helpers.*;

Q. What is the difference between the following?

1. jshell -v

2. jshell -v --startup mystartup.jsh

3. jshell -v --startup DEFAULT mystartup.jsh
4. jshell -v --startup JAVASE

5. jshell -v --startup JAVASE mystartup.jsh

Need of PRINTING Option at the startup:

Usually we can use System.out.print() or System.out.printin() methods to print some statements
to the console. If we use PRINTING Option then several overloaded print() and printin() methods
will be provided at the time of startup and these internally call System.out.print() and
System.out.printin() methods methods.

Hence to print statements to the console just we can use print() or printin() methods directly
instead of using System.out.print() or System.out.printin() methods.

D:\>jshell -v --startup PRINTING
jshell> /list -start

sl : void print(boolean b) { System.out.print(b); }

s2 : void print(char c) { System.out.print(c); }

s3 : void print(int i) { System.out.print(i); }

s4 : void print(long I) { System.out.print(l); }

s5 : void print(float f) { System.out.print(f); }

s6 : void print(double d) { System.out.print(d); }

s7 : void print(char s[]) { System.out.print(s); }

s8 : void print(String s) { System.out.print(s); }

s9 : void print(Object obj) { System.out.print(obj); }
s10 : void printin() { System.out.printin(); }

s11 : void printin(boolean b) { System.out.printin(b); }
s12 : void printin(char c) { System.out.printin(c); }

s13 : void printin(int i) { System.out.printin(i); }

s14 : void printin(long 1) { System.out.printin(l); }

s15 : void printin(float f) { System.out.printin(f); }

s16 : void printin(double d) { System.out.printin(d); }
s17 : void printin(char s[]) { System.out.printin(s); }
518 : void printin(String s) { System.out.printin(s); }
s19 : void printin(Object obj) { System.out.printin(obj); }

~ 46 ~

s20 : void printf(java.util.Locale |, String format, Object... args) { System.out.printf(l, format, args);

}
s21 : void printf(String format, Object... args) { System.out.printf(format, args); }

Now onwards,to print some statements to the console directly we can use print() and printin()
methodds.

jshell> print("Hello");
Hello

jshell> print(10.5)
10.5

Note:

1. Total 21 overloaded print(),printin() and printf() methods provided because of PRINTING
shortcut.

2. Whenever we are using PRINTING shortcut,then DEFAULT imports won't come. Hence,to get
DEFAULT imports and PRINTING shortcut simultaneously,we have to open JShell as follows.

D:\>jshell -v --startup DEFAULT PRINTING

Note:

Various allowed options with --startup are :
1. DEFAULT
2. JAVASE
3. PRINTING

~47 ~

UNIT — 13: Shortcuts and Auto-Completion of Commands

Shortcut for Creating Variables:

Just type the value on the JShell and then "Shift+Tab followed by v" then complete variable
declaration code will be generated we have to provide only name of the variable.

jshell> "Durga" // just press "Shift+Tab followed by v"
jshell> String s= "Durga"

We have to provide only name s

jshell> 10.5 // just press "Shift+Tab followed by v"
jshell> double d = 10.5

Shortcut for auto-import:

just type class or interface name on the JShell and press "Shift+Tab followed by i".
Then we will get options for import.

jshell> Connection // press "Shift+Tab followed by i"
0: Do nothing

1: import: com.sun.jdi.connect.spi.Connection

2: import: java.sql.Connection

Choice: //enter 2

Imported: java.sql.Connection

jshell> /imports

| import java.io.*

| import java.math.*

| import java.net.*

| import java.nio.file.*

| import java.util.*

| import java.util.concurrent.*
| import java.util.function.*

| import java.util.prefs.*

| import java.util.regex.*

| import java.util.stream.*

| importjava.sql.Connection

~ 48 ~

Auto Completion commands :

1. To get all static members of the class:

jshell>classsname.<Tab>

Eg:
jshell> String.<Tab>

CASE_INSENSITIVE_ORDER class copyValueOf(
format(join(valueOf(

2. To get all instance members of class:

jshell>objectreference.<Tab>

jshell> String s="Durga";
jshell> s.<Tab>

charAt(chars() codePointAt(codePointBefore(
codePointCount(codePoints() compareTo(compareTolgnoreCase(
concat(contains(contentEquals(endsWith(

equals(equalsignoreCase(getBytes(getChars(

getClass() hashCode() indexOf(intern()

isEmpty() lastindexOf(length() matches(

notify() notifyAll() offsetByCodePoints(regionMatches(

replace(replaceAll(replaceFirst(split(

startsWith(subSequence(substring(toCharArray()
toLowerCase(toString() toUpperCase(trim()

3. To get signature and documentation of a method:

jshell> classname.methodname(<Tab>
jshell> objectreference.methodname(<Tab>

jshell> s.sub<Tab>
subSequence(substring(

jshell> s.substring(
substring(

jshell> s.substring(<Tab>

Signatures:

String String.substring(int beginindex)

String String.substring(int beginindex, int endindex)

<press Tab again to see documentation>
jshell> s.substring(<Tab>

~ 49 ~

String String.substring(int beginindex)
Returns a string that is a substring of this string.The substring begins with the character at the
specified index and extends to the end of this string.

Examples:
"unhappy".substring(2) returns "happy"

"Harbison".substring(3) returns "bison"
"emptiness".substring(9) returns "" (an empty string)

Parameters:
beginindex - the beginning index, inclusive.

Returns:
the specified substring.

Note: Even this <Tab> short cut applicable for our own classes and methods also.

jshell> public void m1(int...x){}
| created method mi(int...)

jshell> m1(<Tab>
m1(

jshell> m1(<Tab>

Signatures:
void mi(int... x)

~50 ~

	JAVA 9
	JShell
	UNIT 1: Introduction to the JShell
	Limitiations of JShell:

	UNIT-2: Getting Started with JShell
	Starting and Stopping JShell:
	How to exit jshell:

	UNIT - 3: Getting Help from the JShell
	Agenda:

	2) To know the version of jshell
	3) To know introduction of jshell
	4) For List of commands
	5) To get information about a particular command
	To get Information about methods command
	6) To get just names of all commands without any description
	If we press tab again then we will get one line synopsis for every command:

	7) To know the list of options available for a command
	If we press tab again then we will get synopsis:
	If we press tab again then we will get documentation:

	Conclusions:
	1) To know list of options allowed with jshell
	2) To know the version of jshell
	3) To know introduction of jshell
	4) For List of commands
	5) To get information about a particular command
	6) To get just names of all commands without any description
	7) To know the list of options available for a command
	What are Coding Snippets?
	UNIT – 5: Editing and Navigating Code Snippets
	Explicit variables:
	Implicit Variables:
	To List out All Variables(both active and not-active):

	System.out.println() vs System.out.printf() methods:
	FAQs:

	UNIT – 7: Working with JShell Methods
	UNIT – 8: Using An External Editor with JShell
	How to set EditPlus as editor to JShell:
	How to set default editor once again:
	To make default editor as permanent:
	FAQs:
	UNIT – 9: Using classes,interfaces and enum with JShell

	UNIT – 10: Loading and Saving Snippets in JShell
	mysnippets.jsh:

	Saving JShell snippets to the file:
	How to Reload Previous state (session) of JShell:

	UNIT – 11: Using Jar Files in the JShell
	1. Adding Jar File to the JShell from Command Prompt:
	DaTabase info:
	Shortcut for Creating Variables:
	Shortcut for auto-import:
	1. To get all static members of the class:
	2. To get all instance members of class:
	3. To get signature and documentation of a method:
	Examples:
	Parameters:
	Returns:

